Cargando…
LRLSHMDA: Laplacian Regularized Least Squares for Human Microbe–Disease Association prediction
An increasing number of evidences indicate microbes are implicated in human physiological mechanisms, including complicated disease pathology. Some microbes have been demonstrated to be associated with diverse important human diseases or disorders. Through investigating these disease-related microbe...
Autores principales: | Wang, Fan, Huang, Zhi-An, Chen, Xing, Zhu, Zexuan, Wen, Zhenkun, Zhao, Jiyun, Yan, Gui-Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548838/ https://www.ncbi.nlm.nih.gov/pubmed/28790448 http://dx.doi.org/10.1038/s41598-017-08127-2 |
Ejemplares similares
-
Kinase Identification with Supervised Laplacian Regularized Least Squares
por: Li, Ao, et al.
Publicado: (2015) -
Finding Lung-Cancer-Related lncRNAs Based on Laplacian Regularized Least Squares With Unbalanced Bi-Random Walk
por: Guo, Zhifeng, et al.
Publicado: (2022) -
MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities
por: Xu, Da, et al.
Publicado: (2021) -
PBHMDA: Path-Based Human Microbe-Disease Association Prediction
por: Huang, Zhi-An, et al.
Publicado: (2017) -
MKRMDA: multiple kernel learning-based Kronecker regularized least squares for MiRNA–disease association prediction
por: Chen, Xing, et al.
Publicado: (2017)