Cargando…
Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells
Bisphenol-A (BPA) has been considered as an endocrine disrupting chemical (EDC) because it can exert estrogenic properties. For bisphenol-S (BPS) and bisphenol-F (BPF) that are BPA analogs and substitutes, their risk to estrogen-dependent cancer has been reported rarely compared with the numerous ca...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nanjin Medical University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548997/ https://www.ncbi.nlm.nih.gov/pubmed/28808208 http://dx.doi.org/10.7555/JBR.31.20160162 |
_version_ | 1783255927713955840 |
---|---|
author | Kim, Ji-Youn Choi, Ho-Gyu Lee, Hae-Miru Lee, Geum-A Hwang, Kyung-A Choi, Kyung-Chul |
author_facet | Kim, Ji-Youn Choi, Ho-Gyu Lee, Hae-Miru Lee, Geum-A Hwang, Kyung-A Choi, Kyung-Chul |
author_sort | Kim, Ji-Youn |
collection | PubMed |
description | Bisphenol-A (BPA) has been considered as an endocrine disrupting chemical (EDC) because it can exert estrogenic properties. For bisphenol-S (BPS) and bisphenol-F (BPF) that are BPA analogs and substitutes, their risk to estrogen-dependent cancer has been reported rarely compared with the numerous cases of BPA. In this study, we examined whether BPA, BPS, and BPF can lead to the proliferation, migration, and epithelial mesenchymal transition (EMT) of MCF-7 clonal variant (MCF-7 CV) breast cancer cells expressing estrogen receptors (ERs). In a cell viability assay, BPA, BPS, and BPF significantly increased proliferation of MCF-7 CV cells compared to control (DMSO) as did 17β-estradiol (E2). In Western blotting assay, BPA, BPS, and BPF enhanced the protein expression of cell cycle progression genes such as cyclin D1 and E1. In addition, MCF-7 CV cells lost cell to cell contacts and acquired fibroblast-like morphology by the treatment of BPA, BPS, or BPF for 24 hours. In cell migration assay, BPA, BPS, and BPF accelerated the migration capability of MCF-7 CV cells as did E2. In relation with the EMT process, BPA, BPS, and BPF increased the protein expression ofN-cadherin, while they decreased the protein expression of E-cadherin. When BPA, BPS, and BPF were co-treated with ICI 182,780, an ER antagonist, proliferation effects were reversed, the expression of cyclin D1 and cyclin E1 was downregulated, and the altered cell migration and expression ofN-cadherin and E-cadherin by BPA, BPS, and BPF were restored to the control level. Thus, these results imply that BPS and BPF also have the risk of breast cancer progression as much as BPA in the induction of proliferation and migration of MCF-7 CV cells by regulating the protein expression of cell cycle-related genes and EMT markersvia the ER-dependent pathway. |
format | Online Article Text |
id | pubmed-5548997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nanjin Medical University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-55489972017-10-05 Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells Kim, Ji-Youn Choi, Ho-Gyu Lee, Hae-Miru Lee, Geum-A Hwang, Kyung-A Choi, Kyung-Chul J Biomed Res Original Article Bisphenol-A (BPA) has been considered as an endocrine disrupting chemical (EDC) because it can exert estrogenic properties. For bisphenol-S (BPS) and bisphenol-F (BPF) that are BPA analogs and substitutes, their risk to estrogen-dependent cancer has been reported rarely compared with the numerous cases of BPA. In this study, we examined whether BPA, BPS, and BPF can lead to the proliferation, migration, and epithelial mesenchymal transition (EMT) of MCF-7 clonal variant (MCF-7 CV) breast cancer cells expressing estrogen receptors (ERs). In a cell viability assay, BPA, BPS, and BPF significantly increased proliferation of MCF-7 CV cells compared to control (DMSO) as did 17β-estradiol (E2). In Western blotting assay, BPA, BPS, and BPF enhanced the protein expression of cell cycle progression genes such as cyclin D1 and E1. In addition, MCF-7 CV cells lost cell to cell contacts and acquired fibroblast-like morphology by the treatment of BPA, BPS, or BPF for 24 hours. In cell migration assay, BPA, BPS, and BPF accelerated the migration capability of MCF-7 CV cells as did E2. In relation with the EMT process, BPA, BPS, and BPF increased the protein expression ofN-cadherin, while they decreased the protein expression of E-cadherin. When BPA, BPS, and BPF were co-treated with ICI 182,780, an ER antagonist, proliferation effects were reversed, the expression of cyclin D1 and cyclin E1 was downregulated, and the altered cell migration and expression ofN-cadherin and E-cadherin by BPA, BPS, and BPF were restored to the control level. Thus, these results imply that BPS and BPF also have the risk of breast cancer progression as much as BPA in the induction of proliferation and migration of MCF-7 CV cells by regulating the protein expression of cell cycle-related genes and EMT markersvia the ER-dependent pathway. Nanjin Medical University Press 2017 /pmc/articles/PMC5548997/ /pubmed/28808208 http://dx.doi.org/10.7555/JBR.31.20160162 Text en © 2017 by the Journal of Biomedical Research. All rights reserved This is an open access article under the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. |
spellingShingle | Original Article Kim, Ji-Youn Choi, Ho-Gyu Lee, Hae-Miru Lee, Geum-A Hwang, Kyung-A Choi, Kyung-Chul Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells |
title | Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells |
title_full | Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells |
title_fullStr | Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells |
title_full_unstemmed | Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells |
title_short | Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells |
title_sort | effects of bisphenol compounds on the growth and epithelial mesenchymal transition of mcf-7 cv human breast cancer cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5548997/ https://www.ncbi.nlm.nih.gov/pubmed/28808208 http://dx.doi.org/10.7555/JBR.31.20160162 |
work_keys_str_mv | AT kimjiyoun effectsofbisphenolcompoundsonthegrowthandepithelialmesenchymaltransitionofmcf7cvhumanbreastcancercells AT choihogyu effectsofbisphenolcompoundsonthegrowthandepithelialmesenchymaltransitionofmcf7cvhumanbreastcancercells AT leehaemiru effectsofbisphenolcompoundsonthegrowthandepithelialmesenchymaltransitionofmcf7cvhumanbreastcancercells AT leegeuma effectsofbisphenolcompoundsonthegrowthandepithelialmesenchymaltransitionofmcf7cvhumanbreastcancercells AT hwangkyunga effectsofbisphenolcompoundsonthegrowthandepithelialmesenchymaltransitionofmcf7cvhumanbreastcancercells AT choikyungchul effectsofbisphenolcompoundsonthegrowthandepithelialmesenchymaltransitionofmcf7cvhumanbreastcancercells |