Cargando…
Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed
Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis) to be important in the very early period of converting muscle into meat. The dynamic balance that...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549745/ https://www.ncbi.nlm.nih.gov/pubmed/28792534 http://dx.doi.org/10.1371/journal.pone.0182928 |
_version_ | 1783256024258445312 |
---|---|
author | Rønning, Sissel Beate Andersen, Petter Vejle Pedersen, Mona Elisabeth Hollung, Kristin |
author_facet | Rønning, Sissel Beate Andersen, Petter Vejle Pedersen, Mona Elisabeth Hollung, Kristin |
author_sort | Rønning, Sissel Beate |
collection | PubMed |
description | Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis) to be important in the very early period of converting muscle into meat. The dynamic balance that occurs between anti-apoptotic members, such as Bcl-2, and pro-apoptotic members (Bid, Bim) helps determine whether the cell initiates apoptosis. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to investigate if apoptosis is induced when oxygen is removed from the growth medium. Primary bovine muscle cells were differentiated to form myotubes, and anoxia was induced for 6h. The anoxic conditions significantly increased (P<0.05) the relative gene expression of anti- and pro-apoptotic markers (Aif, Bcl-2, Bid and Bim), and the PARK7 (P<0.05) and Grp75 (Hsp70) protein expressions were transiently increased. The anoxic conditions also led to a loss of mitochondrial membrane potential, which is an early apoptotic event, as well as cytochrome c release from the mitochondria. Finally, reorganization and degradation of cytoskeletal filaments occurred. These results suggest that muscle cells enters apoptosis via the intrinsic pathway rapidly when available oxygen in the muscle diminishes post-mortem. |
format | Online Article Text |
id | pubmed-5549745 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55497452017-08-12 Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed Rønning, Sissel Beate Andersen, Petter Vejle Pedersen, Mona Elisabeth Hollung, Kristin PLoS One Research Article Muscle cells undergo changes post-mortem during the process of converting muscle into meat, and this complex process is far from revealed. Recent reports have suggested programmed cell death (apoptosis) to be important in the very early period of converting muscle into meat. The dynamic balance that occurs between anti-apoptotic members, such as Bcl-2, and pro-apoptotic members (Bid, Bim) helps determine whether the cell initiates apoptosis. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to investigate if apoptosis is induced when oxygen is removed from the growth medium. Primary bovine muscle cells were differentiated to form myotubes, and anoxia was induced for 6h. The anoxic conditions significantly increased (P<0.05) the relative gene expression of anti- and pro-apoptotic markers (Aif, Bcl-2, Bid and Bim), and the PARK7 (P<0.05) and Grp75 (Hsp70) protein expressions were transiently increased. The anoxic conditions also led to a loss of mitochondrial membrane potential, which is an early apoptotic event, as well as cytochrome c release from the mitochondria. Finally, reorganization and degradation of cytoskeletal filaments occurred. These results suggest that muscle cells enters apoptosis via the intrinsic pathway rapidly when available oxygen in the muscle diminishes post-mortem. Public Library of Science 2017-08-08 /pmc/articles/PMC5549745/ /pubmed/28792534 http://dx.doi.org/10.1371/journal.pone.0182928 Text en © 2017 Rønning et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rønning, Sissel Beate Andersen, Petter Vejle Pedersen, Mona Elisabeth Hollung, Kristin Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed |
title | Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed |
title_full | Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed |
title_fullStr | Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed |
title_full_unstemmed | Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed |
title_short | Primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed |
title_sort | primary bovine skeletal muscle cells enters apoptosis rapidly via the intrinsic pathway when available oxygen is removed |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549745/ https://www.ncbi.nlm.nih.gov/pubmed/28792534 http://dx.doi.org/10.1371/journal.pone.0182928 |
work_keys_str_mv | AT rønningsisselbeate primarybovineskeletalmusclecellsentersapoptosisrapidlyviatheintrinsicpathwaywhenavailableoxygenisremoved AT andersenpettervejle primarybovineskeletalmusclecellsentersapoptosisrapidlyviatheintrinsicpathwaywhenavailableoxygenisremoved AT pedersenmonaelisabeth primarybovineskeletalmusclecellsentersapoptosisrapidlyviatheintrinsicpathwaywhenavailableoxygenisremoved AT hollungkristin primarybovineskeletalmusclecellsentersapoptosisrapidlyviatheintrinsicpathwaywhenavailableoxygenisremoved |