Cargando…
MiR-1254 suppresses HO-1 expression through seed region-dependent silencing and non-seed interaction with TFAP2A transcript to attenuate NSCLC growth
MicroRNAs (miRNAs) are a class of small non-coding RNAs, which direct post-transcriptional gene silencing (PTGS) and function in a vast range of biological events including cancer development. Most miRNAs pair to the target sites through seed region near the 5’ end, leading to mRNA cleavage and/or t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549757/ https://www.ncbi.nlm.nih.gov/pubmed/28749936 http://dx.doi.org/10.1371/journal.pgen.1006896 |
Sumario: | MicroRNAs (miRNAs) are a class of small non-coding RNAs, which direct post-transcriptional gene silencing (PTGS) and function in a vast range of biological events including cancer development. Most miRNAs pair to the target sites through seed region near the 5’ end, leading to mRNA cleavage and/or translation repression. Here, we demonstrated a miRNA-induced dual regulation of heme oxygenase-1 (HO-1) via seed region and non-seed region, consequently inhibited tumor growth of NSCLC. We identified miR-1254 as a negative regulator inhibiting HO-1 translation by directly targeting HO-1 3’UTR via its seed region, and suppressing HO-1 transcription via non-seed region-dependent inhibition of transcriptional factor AP-2 alpha (TFAP2A), a transcriptional activator of HO-1. MiR-1254 induced cell apoptosis and cell cycle arrest in human non-small cell lung carcinoma (NSCLC) cells by inhibiting the expression of HO-1, consequently suppressed NSCLC cell growth. Consistently with the in vitro studies, mouse xenograft studies validated that miR-1254 suppressed NSCLC tumor growth in vivo. Moreover, we found that HO-1 expression was inversely correlated with miR-1254 level in human NSCLC tumor samples and cell lines. Overall, these findings identify the dual inhibition of HO-1 by miR-1254 as a novel functional mechanism of miRNA, which results in a more effective inhibition of oncogenic mRNA, and leads to a tumor suppressive effect. |
---|