Cargando…
MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons
The H1 haplotype of the microtubule-associated protein tau (MAPT) locus is genetically associated with neurodegenerative diseases, including Parkinson's disease (PD), and affects gene expression and splicing. However, the functional impact on neurons of such expression differences has yet to be...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549835/ https://www.ncbi.nlm.nih.gov/pubmed/28689993 http://dx.doi.org/10.1016/j.stemcr.2017.06.005 |
_version_ | 1783256035389079552 |
---|---|
author | Beevers, Joel E. Lai, Mang Ching Collins, Emma Booth, Heather D.E. Zambon, Federico Parkkinen, Laura Vowles, Jane Cowley, Sally A. Wade-Martins, Richard Caffrey, Tara M. |
author_facet | Beevers, Joel E. Lai, Mang Ching Collins, Emma Booth, Heather D.E. Zambon, Federico Parkkinen, Laura Vowles, Jane Cowley, Sally A. Wade-Martins, Richard Caffrey, Tara M. |
author_sort | Beevers, Joel E. |
collection | PubMed |
description | The H1 haplotype of the microtubule-associated protein tau (MAPT) locus is genetically associated with neurodegenerative diseases, including Parkinson's disease (PD), and affects gene expression and splicing. However, the functional impact on neurons of such expression differences has yet to be fully elucidated. Here, we employ extended maturation phases during differentiation of induced pluripotent stem cells (iPSCs) into mature dopaminergic neuronal cultures to obtain cultures expressing all six adult tau protein isoforms. After 6 months of maturation, levels of exon 3+ and exon 10+ transcripts approach those of adult brain. Mature dopaminergic neuronal cultures display haplotype differences in expression, with H1 expressing 22% higher levels of MAPT transcripts than H2 and H2 expressing 2-fold greater exon 3+ transcripts than H1. Furthermore, knocking down adult tau protein variants alters axonal transport velocities in mature iPSC-derived dopaminergic neuronal cultures. This work links haplotype-specific MAPT expression with a biologically functional outcome relevant for PD. |
format | Online Article Text |
id | pubmed-5549835 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-55498352017-08-17 MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons Beevers, Joel E. Lai, Mang Ching Collins, Emma Booth, Heather D.E. Zambon, Federico Parkkinen, Laura Vowles, Jane Cowley, Sally A. Wade-Martins, Richard Caffrey, Tara M. Stem Cell Reports Article The H1 haplotype of the microtubule-associated protein tau (MAPT) locus is genetically associated with neurodegenerative diseases, including Parkinson's disease (PD), and affects gene expression and splicing. However, the functional impact on neurons of such expression differences has yet to be fully elucidated. Here, we employ extended maturation phases during differentiation of induced pluripotent stem cells (iPSCs) into mature dopaminergic neuronal cultures to obtain cultures expressing all six adult tau protein isoforms. After 6 months of maturation, levels of exon 3+ and exon 10+ transcripts approach those of adult brain. Mature dopaminergic neuronal cultures display haplotype differences in expression, with H1 expressing 22% higher levels of MAPT transcripts than H2 and H2 expressing 2-fold greater exon 3+ transcripts than H1. Furthermore, knocking down adult tau protein variants alters axonal transport velocities in mature iPSC-derived dopaminergic neuronal cultures. This work links haplotype-specific MAPT expression with a biologically functional outcome relevant for PD. Elsevier 2017-07-06 /pmc/articles/PMC5549835/ /pubmed/28689993 http://dx.doi.org/10.1016/j.stemcr.2017.06.005 Text en © 2017 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Beevers, Joel E. Lai, Mang Ching Collins, Emma Booth, Heather D.E. Zambon, Federico Parkkinen, Laura Vowles, Jane Cowley, Sally A. Wade-Martins, Richard Caffrey, Tara M. MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons |
title | MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons |
title_full | MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons |
title_fullStr | MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons |
title_full_unstemmed | MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons |
title_short | MAPT Genetic Variation and Neuronal Maturity Alter Isoform Expression Affecting Axonal Transport in iPSC-Derived Dopamine Neurons |
title_sort | mapt genetic variation and neuronal maturity alter isoform expression affecting axonal transport in ipsc-derived dopamine neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549835/ https://www.ncbi.nlm.nih.gov/pubmed/28689993 http://dx.doi.org/10.1016/j.stemcr.2017.06.005 |
work_keys_str_mv | AT beeversjoele maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT laimangching maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT collinsemma maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT boothheatherde maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT zambonfederico maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT parkkinenlaura maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT vowlesjane maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT cowleysallya maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT wademartinsrichard maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons AT caffreytaram maptgeneticvariationandneuronalmaturityalterisoformexpressionaffectingaxonaltransportinipscderiveddopamineneurons |