Cargando…
An adaptive two-sample test for high-dimensional means
Several two-sample tests for high-dimensional data have been proposed recently, but they are powerful only against certain alternative hypotheses. In practice, since the true alternative hypothesis is unknown, it is unclear how to choose a powerful test. We propose an adaptive test that maintains hi...
Autores principales: | Xu, Gongjun, Lin, Lifeng, Wei, Peng, Pan, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549874/ https://www.ncbi.nlm.nih.gov/pubmed/28804142 http://dx.doi.org/10.1093/biomet/asw029 |
Ejemplares similares
-
A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models
por: Wu, Chong, et al.
Publicado: (2020) -
Physically informed machine-learning algorithms for the identification of two-dimensional atomic crystals
por: Zichi, Laura, et al.
Publicado: (2023) -
A robust mean and variance test with application to high-dimensional phenotypes
por: Staley, James R., et al.
Publicado: (2021) -
Nonlocal Means Two Dimensional Histogram-Based Image Segmentation via Minimizing Relative Entropy
por: Jiang, Chundi, et al.
Publicado: (2018) -
Highly adaptive tests for group differences in brain functional connectivity
por: Kim, Junghi, et al.
Publicado: (2015)