Cargando…
Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM)
This study investigated the applicability of an HY-differential mobility analyzer with an optical particle counter (HY-DMA/OPC), named as KOFAM, for counting fibrous matters in real time. Fibers separated from particles by the HY-DMA were counted with an OPC. To assess the KOFAM performance, the pro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549976/ https://www.ncbi.nlm.nih.gov/pubmed/28793318 http://dx.doi.org/10.1371/journal.pone.0182119 |
_version_ | 1783256056233721856 |
---|---|
author | Choi, Sungwon Jang, Kwangmyung Park, Kyunghoon Kim, Hyunwook |
author_facet | Choi, Sungwon Jang, Kwangmyung Park, Kyunghoon Kim, Hyunwook |
author_sort | Choi, Sungwon |
collection | PubMed |
description | This study investigated the applicability of an HY-differential mobility analyzer with an optical particle counter (HY-DMA/OPC), named as KOFAM, for counting fibrous matters in real time. Fibers separated from particles by the HY-DMA were counted with an OPC. To assess the KOFAM performance, the proposed method and the conventional gold standard phase contrast microscopy (PCM) method were compared in terms of variables such as recovery, relative difference, coefficient of determination, and conformity. The optimal sheath-to-aerosol (outlet) flow ratio of the internal flow in the HY-DMA was determined to be 1.6:1. In terms of recovery of the HY-DMA, the highest recovery was obtained at a voltage of 500 V regardless of which type of asbestos was tested. The recovery rate for serpentine was 45.5% and that for amphibole was 34.9%. The coefficients of determination of serpentine (R(2) = 0.89) and amphibole (R(2) = 0.87) were highly correlated. With respect to the coefficient of variation (CV), the KOFAM demonstrated superior performance over the M7400AD and F-1 methods and showed almost no difference from the PCM method (KOFAM: 22.5%, M7400AD: 32.4%, F-1: 88.8%, and PCM: 21.9%). There was no statistically significant difference between concentration measurements of the KOFAM and PCM analyses. Accordingly, it was concluded that the KOFAM can be used as a superior alternative to conventional fiber measurement methods. The preliminary results support the use of the KOFAM for constant measurement of airborne asbestos concentrations in real time. |
format | Online Article Text |
id | pubmed-5549976 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55499762017-08-15 Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) Choi, Sungwon Jang, Kwangmyung Park, Kyunghoon Kim, Hyunwook PLoS One Research Article This study investigated the applicability of an HY-differential mobility analyzer with an optical particle counter (HY-DMA/OPC), named as KOFAM, for counting fibrous matters in real time. Fibers separated from particles by the HY-DMA were counted with an OPC. To assess the KOFAM performance, the proposed method and the conventional gold standard phase contrast microscopy (PCM) method were compared in terms of variables such as recovery, relative difference, coefficient of determination, and conformity. The optimal sheath-to-aerosol (outlet) flow ratio of the internal flow in the HY-DMA was determined to be 1.6:1. In terms of recovery of the HY-DMA, the highest recovery was obtained at a voltage of 500 V regardless of which type of asbestos was tested. The recovery rate for serpentine was 45.5% and that for amphibole was 34.9%. The coefficients of determination of serpentine (R(2) = 0.89) and amphibole (R(2) = 0.87) were highly correlated. With respect to the coefficient of variation (CV), the KOFAM demonstrated superior performance over the M7400AD and F-1 methods and showed almost no difference from the PCM method (KOFAM: 22.5%, M7400AD: 32.4%, F-1: 88.8%, and PCM: 21.9%). There was no statistically significant difference between concentration measurements of the KOFAM and PCM analyses. Accordingly, it was concluded that the KOFAM can be used as a superior alternative to conventional fiber measurement methods. The preliminary results support the use of the KOFAM for constant measurement of airborne asbestos concentrations in real time. Public Library of Science 2017-08-09 /pmc/articles/PMC5549976/ /pubmed/28793318 http://dx.doi.org/10.1371/journal.pone.0182119 Text en © 2017 Choi et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Choi, Sungwon Jang, Kwangmyung Park, Kyunghoon Kim, Hyunwook Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) |
title | Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) |
title_full | Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) |
title_fullStr | Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) |
title_full_unstemmed | Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) |
title_short | Real-time measurement of fibers using an HY-differential mobility analyzer with an optical particle counter (KOFAM) |
title_sort | real-time measurement of fibers using an hy-differential mobility analyzer with an optical particle counter (kofam) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549976/ https://www.ncbi.nlm.nih.gov/pubmed/28793318 http://dx.doi.org/10.1371/journal.pone.0182119 |
work_keys_str_mv | AT choisungwon realtimemeasurementoffibersusinganhydifferentialmobilityanalyzerwithanopticalparticlecounterkofam AT jangkwangmyung realtimemeasurementoffibersusinganhydifferentialmobilityanalyzerwithanopticalparticlecounterkofam AT parkkyunghoon realtimemeasurementoffibersusinganhydifferentialmobilityanalyzerwithanopticalparticlecounterkofam AT kimhyunwook realtimemeasurementoffibersusinganhydifferentialmobilityanalyzerwithanopticalparticlecounterkofam |