Cargando…
Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae
Meiotic chromosomes assemble characteristic “axial element” structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained uncl...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549997/ https://www.ncbi.nlm.nih.gov/pubmed/28746375 http://dx.doi.org/10.1371/journal.pgen.1006928 |
_version_ | 1783256061302538240 |
---|---|
author | Markowitz, Tovah E. Suarez, Daniel Blitzblau, Hannah G. Patel, Neem J. Markhard, Andrew L. MacQueen, Amy J. Hochwagen, Andreas |
author_facet | Markowitz, Tovah E. Suarez, Daniel Blitzblau, Hannah G. Patel, Neem J. Markhard, Andrew L. MacQueen, Amy J. Hochwagen, Andreas |
author_sort | Markowitz, Tovah E. |
collection | PubMed |
description | Meiotic chromosomes assemble characteristic “axial element” structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained unclear. Here, we investigated this question in S. cerevisiae using the putative condensin allele ycs4S. We show that the severe axial element assembly defects of this allele are explained by a linked mutation in the promoter of the major axial element gene RED1 that reduces Red1 protein levels to 20–25% of wild type. Intriguingly, the Red1 levels of ycs4S mutants support meiotic processes linked to axis integrity, including DNA double-strand break formation and deposition of the synapsis protein Zip1, at levels that permit 70% gamete survival. By contrast, the ability to elicit a meiotic checkpoint arrest is completely eliminated. This selective loss of checkpoint function is supported by a RED1 dosage series and is associated with the loss of most of the cytologically detectable Red1 from the axial element. Our results indicate separable roles for Red1 in building the structural axis of meiotic chromosomes and mounting a sustained recombination checkpoint response. |
format | Online Article Text |
id | pubmed-5549997 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55499972017-08-15 Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae Markowitz, Tovah E. Suarez, Daniel Blitzblau, Hannah G. Patel, Neem J. Markhard, Andrew L. MacQueen, Amy J. Hochwagen, Andreas PLoS Genet Research Article Meiotic chromosomes assemble characteristic “axial element” structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained unclear. Here, we investigated this question in S. cerevisiae using the putative condensin allele ycs4S. We show that the severe axial element assembly defects of this allele are explained by a linked mutation in the promoter of the major axial element gene RED1 that reduces Red1 protein levels to 20–25% of wild type. Intriguingly, the Red1 levels of ycs4S mutants support meiotic processes linked to axis integrity, including DNA double-strand break formation and deposition of the synapsis protein Zip1, at levels that permit 70% gamete survival. By contrast, the ability to elicit a meiotic checkpoint arrest is completely eliminated. This selective loss of checkpoint function is supported by a RED1 dosage series and is associated with the loss of most of the cytologically detectable Red1 from the axial element. Our results indicate separable roles for Red1 in building the structural axis of meiotic chromosomes and mounting a sustained recombination checkpoint response. Public Library of Science 2017-07-26 /pmc/articles/PMC5549997/ /pubmed/28746375 http://dx.doi.org/10.1371/journal.pgen.1006928 Text en © 2017 Markowitz et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Markowitz, Tovah E. Suarez, Daniel Blitzblau, Hannah G. Patel, Neem J. Markhard, Andrew L. MacQueen, Amy J. Hochwagen, Andreas Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae |
title | Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae |
title_full | Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae |
title_fullStr | Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae |
title_full_unstemmed | Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae |
title_short | Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae |
title_sort | reduced dosage of the chromosome axis factor red1 selectively disrupts the meiotic recombination checkpoint in saccharomyces cerevisiae |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549997/ https://www.ncbi.nlm.nih.gov/pubmed/28746375 http://dx.doi.org/10.1371/journal.pgen.1006928 |
work_keys_str_mv | AT markowitztovahe reduceddosageofthechromosomeaxisfactorred1selectivelydisruptsthemeioticrecombinationcheckpointinsaccharomycescerevisiae AT suarezdaniel reduceddosageofthechromosomeaxisfactorred1selectivelydisruptsthemeioticrecombinationcheckpointinsaccharomycescerevisiae AT blitzblauhannahg reduceddosageofthechromosomeaxisfactorred1selectivelydisruptsthemeioticrecombinationcheckpointinsaccharomycescerevisiae AT patelneemj reduceddosageofthechromosomeaxisfactorred1selectivelydisruptsthemeioticrecombinationcheckpointinsaccharomycescerevisiae AT markhardandrewl reduceddosageofthechromosomeaxisfactorred1selectivelydisruptsthemeioticrecombinationcheckpointinsaccharomycescerevisiae AT macqueenamyj reduceddosageofthechromosomeaxisfactorred1selectivelydisruptsthemeioticrecombinationcheckpointinsaccharomycescerevisiae AT hochwagenandreas reduceddosageofthechromosomeaxisfactorred1selectivelydisruptsthemeioticrecombinationcheckpointinsaccharomycescerevisiae |