Cargando…

Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor

Liver or hepatocytes transplantation is limited by the availability of donor organs. Functional hepatocytes independent of the donor sources may have wide applications in regenerative medicine and the drug industry. Recent studies have demonstrated that chemical cocktails may induce reprogramming of...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Ren, Tang, Wei, Yuan, Qianting, Hui, Lijian, Wang, Xin, Xie, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550014/
https://www.ncbi.nlm.nih.gov/pubmed/28757167
http://dx.doi.org/10.1016/j.stemcr.2017.06.013
Descripción
Sumario:Liver or hepatocytes transplantation is limited by the availability of donor organs. Functional hepatocytes independent of the donor sources may have wide applications in regenerative medicine and the drug industry. Recent studies have demonstrated that chemical cocktails may induce reprogramming of fibroblasts into a range of functional somatic cells. Here, we show that mouse fibroblasts can be transdifferentiated into the hepatocyte-like cells (iHeps) using only one transcription factor (TF) (Foxa1, Foxa2, or Foxa3) plus a chemical cocktail. These iHeps show typical epithelial morphology, express multiple hepatocyte-specific genes, and acquire hepatocyte functions. Genetic lineage tracing confirms the fibroblast origin of these iHeps. More interestingly, these iHeps are expandable in vitro and can reconstitute the damaged hepatic tissues of the fumarylacetoacetate hydrolase-deficient (Fah(−)/(−)) mice. Our study provides a strategy to generate functional hepatocyte-like cells by using a single TF plus a chemical cocktail and is one step closer to generate the full-chemical iHeps.