Cargando…

Annotating pathogenic non-coding variants in genic regions

Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Gelfman, Sahar, Wang, Quanli, McSweeney, K. Melodi, Ren, Zhong, La Carpia, Francesca, Halvorsen, Matt, Schoch, Kelly, Ratzon, Fanni, Heinzen, Erin L., Boland, Michael J., Petrovski, Slavé, Goldstein, David B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550444/
https://www.ncbi.nlm.nih.gov/pubmed/28794409
http://dx.doi.org/10.1038/s41467-017-00141-2
_version_ 1783256127864045568
author Gelfman, Sahar
Wang, Quanli
McSweeney, K. Melodi
Ren, Zhong
La Carpia, Francesca
Halvorsen, Matt
Schoch, Kelly
Ratzon, Fanni
Heinzen, Erin L.
Boland, Michael J.
Petrovski, Slavé
Goldstein, David B.
author_facet Gelfman, Sahar
Wang, Quanli
McSweeney, K. Melodi
Ren, Zhong
La Carpia, Francesca
Halvorsen, Matt
Schoch, Kelly
Ratzon, Fanni
Heinzen, Erin L.
Boland, Michael J.
Petrovski, Slavé
Goldstein, David B.
author_sort Gelfman, Sahar
collection PubMed
description Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.
format Online
Article
Text
id pubmed-5550444
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-55504442017-08-14 Annotating pathogenic non-coding variants in genic regions Gelfman, Sahar Wang, Quanli McSweeney, K. Melodi Ren, Zhong La Carpia, Francesca Halvorsen, Matt Schoch, Kelly Ratzon, Fanni Heinzen, Erin L. Boland, Michael J. Petrovski, Slavé Goldstein, David B. Nat Commun Article Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes. Nature Publishing Group UK 2017-08-09 /pmc/articles/PMC5550444/ /pubmed/28794409 http://dx.doi.org/10.1038/s41467-017-00141-2 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Gelfman, Sahar
Wang, Quanli
McSweeney, K. Melodi
Ren, Zhong
La Carpia, Francesca
Halvorsen, Matt
Schoch, Kelly
Ratzon, Fanni
Heinzen, Erin L.
Boland, Michael J.
Petrovski, Slavé
Goldstein, David B.
Annotating pathogenic non-coding variants in genic regions
title Annotating pathogenic non-coding variants in genic regions
title_full Annotating pathogenic non-coding variants in genic regions
title_fullStr Annotating pathogenic non-coding variants in genic regions
title_full_unstemmed Annotating pathogenic non-coding variants in genic regions
title_short Annotating pathogenic non-coding variants in genic regions
title_sort annotating pathogenic non-coding variants in genic regions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550444/
https://www.ncbi.nlm.nih.gov/pubmed/28794409
http://dx.doi.org/10.1038/s41467-017-00141-2
work_keys_str_mv AT gelfmansahar annotatingpathogenicnoncodingvariantsingenicregions
AT wangquanli annotatingpathogenicnoncodingvariantsingenicregions
AT mcsweeneykmelodi annotatingpathogenicnoncodingvariantsingenicregions
AT renzhong annotatingpathogenicnoncodingvariantsingenicregions
AT lacarpiafrancesca annotatingpathogenicnoncodingvariantsingenicregions
AT halvorsenmatt annotatingpathogenicnoncodingvariantsingenicregions
AT schochkelly annotatingpathogenicnoncodingvariantsingenicregions
AT ratzonfanni annotatingpathogenicnoncodingvariantsingenicregions
AT heinzenerinl annotatingpathogenicnoncodingvariantsingenicregions
AT bolandmichaelj annotatingpathogenicnoncodingvariantsingenicregions
AT petrovskislave annotatingpathogenicnoncodingvariantsingenicregions
AT goldsteindavidb annotatingpathogenicnoncodingvariantsingenicregions