Cargando…
Disturbed cervical proprioception affects perception of spatial orientation while in motion
The proprioceptive, visual and vestibular sensory systems interact to maintain dynamic stability during movement. The relative importance and interplay between these sensory systems is still not fully understood. Increased knowledge about spatial perception and postural orientation would provide bet...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550524/ https://www.ncbi.nlm.nih.gov/pubmed/28623390 http://dx.doi.org/10.1007/s00221-017-4993-5 |
_version_ | 1783256147557351424 |
---|---|
author | Malmström, Eva-Maj Fransson, Per-Anders Jaxmar Bruinen, Terese Facic, Semir Tjernström, Fredrik |
author_facet | Malmström, Eva-Maj Fransson, Per-Anders Jaxmar Bruinen, Terese Facic, Semir Tjernström, Fredrik |
author_sort | Malmström, Eva-Maj |
collection | PubMed |
description | The proprioceptive, visual and vestibular sensory systems interact to maintain dynamic stability during movement. The relative importance and interplay between these sensory systems is still not fully understood. Increased knowledge about spatial perception and postural orientation would provide better understanding of balance disorders, and their rehabilitation. Displacement of the body in space was recorded in 16 healthy subjects performing a sequence of stepping-in-place tests without any visual or auditory cues. Spatial displacement and orientation in space were determined by calculating two parameters, “Moved distance (sagittal + lateral displacement)” and “Rotation”. During the stepping-in-place tests vibration were applied in a randomized order on four different cervical muscles, and the effects were compared between muscles and to a non-vibration baseline condition. During the tests a forward displacement (“Moved distance”) was found to be the normal behavior, with various degrees of longitudinal rotation (“Rotation”). The moved distance was significantly larger when the vibration was applied on the dorsal muscles (916 mm) relative to on ventral muscles (715 mm) (p = 0.003) and the rate of displacement was significantly larger for dorsal muscles (36.5 mm/s) relative to ventral (28.7 mm/s) vs (p = 0.002). When vibration was applied on the left-sided muscles, 16° rotation to the right was induced (p = 0.005), whereas no significant rotation direction was induced with right-sided vibration (3°). The rate of rotation was significantly larger for vibration applied on ventral muscles (0.44°/s) relative to on dorsal (0.33°/s) (p = 0.019). The results highlight the influence of cervical proprioception on the internal spatial orientation, and subsequent for postural control. |
format | Online Article Text |
id | pubmed-5550524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-55505242017-08-24 Disturbed cervical proprioception affects perception of spatial orientation while in motion Malmström, Eva-Maj Fransson, Per-Anders Jaxmar Bruinen, Terese Facic, Semir Tjernström, Fredrik Exp Brain Res Research Article The proprioceptive, visual and vestibular sensory systems interact to maintain dynamic stability during movement. The relative importance and interplay between these sensory systems is still not fully understood. Increased knowledge about spatial perception and postural orientation would provide better understanding of balance disorders, and their rehabilitation. Displacement of the body in space was recorded in 16 healthy subjects performing a sequence of stepping-in-place tests without any visual or auditory cues. Spatial displacement and orientation in space were determined by calculating two parameters, “Moved distance (sagittal + lateral displacement)” and “Rotation”. During the stepping-in-place tests vibration were applied in a randomized order on four different cervical muscles, and the effects were compared between muscles and to a non-vibration baseline condition. During the tests a forward displacement (“Moved distance”) was found to be the normal behavior, with various degrees of longitudinal rotation (“Rotation”). The moved distance was significantly larger when the vibration was applied on the dorsal muscles (916 mm) relative to on ventral muscles (715 mm) (p = 0.003) and the rate of displacement was significantly larger for dorsal muscles (36.5 mm/s) relative to ventral (28.7 mm/s) vs (p = 0.002). When vibration was applied on the left-sided muscles, 16° rotation to the right was induced (p = 0.005), whereas no significant rotation direction was induced with right-sided vibration (3°). The rate of rotation was significantly larger for vibration applied on ventral muscles (0.44°/s) relative to on dorsal (0.33°/s) (p = 0.019). The results highlight the influence of cervical proprioception on the internal spatial orientation, and subsequent for postural control. Springer Berlin Heidelberg 2017-06-17 2017 /pmc/articles/PMC5550524/ /pubmed/28623390 http://dx.doi.org/10.1007/s00221-017-4993-5 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Article Malmström, Eva-Maj Fransson, Per-Anders Jaxmar Bruinen, Terese Facic, Semir Tjernström, Fredrik Disturbed cervical proprioception affects perception of spatial orientation while in motion |
title | Disturbed cervical proprioception affects perception of spatial orientation while in motion |
title_full | Disturbed cervical proprioception affects perception of spatial orientation while in motion |
title_fullStr | Disturbed cervical proprioception affects perception of spatial orientation while in motion |
title_full_unstemmed | Disturbed cervical proprioception affects perception of spatial orientation while in motion |
title_short | Disturbed cervical proprioception affects perception of spatial orientation while in motion |
title_sort | disturbed cervical proprioception affects perception of spatial orientation while in motion |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550524/ https://www.ncbi.nlm.nih.gov/pubmed/28623390 http://dx.doi.org/10.1007/s00221-017-4993-5 |
work_keys_str_mv | AT malmstromevamaj disturbedcervicalproprioceptionaffectsperceptionofspatialorientationwhileinmotion AT franssonperanders disturbedcervicalproprioceptionaffectsperceptionofspatialorientationwhileinmotion AT jaxmarbruinenterese disturbedcervicalproprioceptionaffectsperceptionofspatialorientationwhileinmotion AT facicsemir disturbedcervicalproprioceptionaffectsperceptionofspatialorientationwhileinmotion AT tjernstromfredrik disturbedcervicalproprioceptionaffectsperceptionofspatialorientationwhileinmotion |