Cargando…
Exploring the quiet eye in archery using field- and laboratory-based tasks
The ‘quiet eye’ (QE)—a period of extended gaze fixation on a target—has been reported in many tasks that require accurate aiming. Longer quiet eye durations (QEDs) are reported in experts compared to non-experts and on successful versus less successful trials. The QE has been extensively studied in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550539/ https://www.ncbi.nlm.nih.gov/pubmed/28660285 http://dx.doi.org/10.1007/s00221-017-4988-2 |
Sumario: | The ‘quiet eye’ (QE)—a period of extended gaze fixation on a target—has been reported in many tasks that require accurate aiming. Longer quiet eye durations (QEDs) are reported in experts compared to non-experts and on successful versus less successful trials. The QE has been extensively studied in the field; however, the cognitive mechanisms underlying the QE are not yet fully understood. We investigated the QEDs of ten expert and ten novice archers in the field and in the laboratory using a computer-based archery task. The computer task consisted of shooting archery targets using a joystick. Random ‘noise’ (visual motion perturbation) was introduced at high and low levels to allow for the controlled examination of the effects of task complexity and processing demands. In this computer task, we also tested an additional group of ten non-archers as controls. In both field and computer tasks, eye movements were measured using electro-oculography. The expert archers exhibited longer QED compared to the novice archers in the field task. In the computer task, the archers again exhibited longer QEDs and were more accurate compared to non-archers. Furthermore, expert archers showed earlier QE onsets and longer QEDs during high noise conditions compared to the novices and non-archers. Our findings show skill-based effects on QED in field conditions and in a novel computer-based archery task, in which online (visual) perturbations modulated experts’ QEDs. These longer QEDs in experts may be used for more efficient programming in which accurate predictions are facilitated by attention control. |
---|