Cargando…
Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective
Genes causally involved in human insensitivity to pain provide a unique molecular source of studying the pathophysiology of pain and the development of novel analgesic drugs. The increasing availability of “big data” enables novel research approaches to chronic pain while also requiring novel techni...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550731/ https://www.ncbi.nlm.nih.gov/pubmed/28848388 http://dx.doi.org/10.3389/fnmol.2017.00252 |
_version_ | 1783256173487587328 |
---|---|
author | Lötsch, Jörn Lippmann, Catharina Kringel, Dario Ultsch, Alfred |
author_facet | Lötsch, Jörn Lippmann, Catharina Kringel, Dario Ultsch, Alfred |
author_sort | Lötsch, Jörn |
collection | PubMed |
description | Genes causally involved in human insensitivity to pain provide a unique molecular source of studying the pathophysiology of pain and the development of novel analgesic drugs. The increasing availability of “big data” enables novel research approaches to chronic pain while also requiring novel techniques for data mining and knowledge discovery. We used machine learning to combine the knowledge about n = 20 genes causally involved in human hereditary insensitivity to pain with the knowledge about the functions of thousands of genes. An integrated computational analysis proposed that among the functions of this set of genes, the processes related to nervous system development and to ceramide and sphingosine signaling pathways are particularly important. This is in line with earlier suggestions to use these pathways as therapeutic target in pain. Following identification of the biological processes characterizing hereditary insensitivity to pain, the biological processes were used for a similarity analysis with the functions of n = 4,834 database-queried drugs. Using emergent self-organizing maps, a cluster of n = 22 drugs was identified sharing important functional features with hereditary insensitivity to pain. Several members of this cluster had been implicated in pain in preclinical experiments. Thus, the present concept of machine-learned knowledge discovery for pain research provides biologically plausible results and seems to be suitable for drug discovery by identifying a narrow choice of repurposing candidates, demonstrating that contemporary machine-learned methods offer innovative approaches to knowledge discovery from available evidence. |
format | Online Article Text |
id | pubmed-5550731 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55507312017-08-28 Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective Lötsch, Jörn Lippmann, Catharina Kringel, Dario Ultsch, Alfred Front Mol Neurosci Neuroscience Genes causally involved in human insensitivity to pain provide a unique molecular source of studying the pathophysiology of pain and the development of novel analgesic drugs. The increasing availability of “big data” enables novel research approaches to chronic pain while also requiring novel techniques for data mining and knowledge discovery. We used machine learning to combine the knowledge about n = 20 genes causally involved in human hereditary insensitivity to pain with the knowledge about the functions of thousands of genes. An integrated computational analysis proposed that among the functions of this set of genes, the processes related to nervous system development and to ceramide and sphingosine signaling pathways are particularly important. This is in line with earlier suggestions to use these pathways as therapeutic target in pain. Following identification of the biological processes characterizing hereditary insensitivity to pain, the biological processes were used for a similarity analysis with the functions of n = 4,834 database-queried drugs. Using emergent self-organizing maps, a cluster of n = 22 drugs was identified sharing important functional features with hereditary insensitivity to pain. Several members of this cluster had been implicated in pain in preclinical experiments. Thus, the present concept of machine-learned knowledge discovery for pain research provides biologically plausible results and seems to be suitable for drug discovery by identifying a narrow choice of repurposing candidates, demonstrating that contemporary machine-learned methods offer innovative approaches to knowledge discovery from available evidence. Frontiers Media S.A. 2017-08-08 /pmc/articles/PMC5550731/ /pubmed/28848388 http://dx.doi.org/10.3389/fnmol.2017.00252 Text en Copyright © 2017 Lötsch, Lippmann, Kringel and Ultsch. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Lötsch, Jörn Lippmann, Catharina Kringel, Dario Ultsch, Alfred Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective |
title | Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective |
title_full | Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective |
title_fullStr | Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective |
title_full_unstemmed | Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective |
title_short | Integrated Computational Analysis of Genes Associated with Human Hereditary Insensitivity to Pain. A Drug Repurposing Perspective |
title_sort | integrated computational analysis of genes associated with human hereditary insensitivity to pain. a drug repurposing perspective |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550731/ https://www.ncbi.nlm.nih.gov/pubmed/28848388 http://dx.doi.org/10.3389/fnmol.2017.00252 |
work_keys_str_mv | AT lotschjorn integratedcomputationalanalysisofgenesassociatedwithhumanhereditaryinsensitivitytopainadrugrepurposingperspective AT lippmanncatharina integratedcomputationalanalysisofgenesassociatedwithhumanhereditaryinsensitivitytopainadrugrepurposingperspective AT kringeldario integratedcomputationalanalysisofgenesassociatedwithhumanhereditaryinsensitivitytopainadrugrepurposingperspective AT ultschalfred integratedcomputationalanalysisofgenesassociatedwithhumanhereditaryinsensitivitytopainadrugrepurposingperspective |