Cargando…

Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae

Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption...

Descripción completa

Detalles Bibliográficos
Autores principales: Chomvong, Kulika, Benjamin, Daniel I., Nomura, Daniel K., Cate, Jamie H. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550752/
https://www.ncbi.nlm.nih.gov/pubmed/28790206
http://dx.doi.org/10.1128/mBio.00855-17
_version_ 1783256178172624896
author Chomvong, Kulika
Benjamin, Daniel I.
Nomura, Daniel K.
Cate, Jamie H. D.
author_facet Chomvong, Kulika
Benjamin, Daniel I.
Nomura, Daniel K.
Cate, Jamie H. D.
author_sort Chomvong, Kulika
collection PubMed
description Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 (PFK2), H(+)-plasma membrane ATPase (PMA1), and glucose sensors (SNF3 and RGT2) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions.
format Online
Article
Text
id pubmed-5550752
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-55507522017-08-14 Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae Chomvong, Kulika Benjamin, Daniel I. Nomura, Daniel K. Cate, Jamie H. D. mBio Research Article Glycolysis is central to energy metabolism in most organisms and is highly regulated to enable optimal growth. In the yeast Saccharomyces cerevisiae, feedback mechanisms that control flux through glycolysis span transcriptional control to metabolite levels in the cell. Using a cellobiose consumption pathway, we decoupled glucose sensing from carbon utilization, revealing new modular layers of control that induce ATP consumption to drive rapid carbon fermentation. Alterations of the beta subunit of phosphofructokinase-1 (PFK2), H(+)-plasma membrane ATPase (PMA1), and glucose sensors (SNF3 and RGT2) revealed the importance of coupling extracellular glucose sensing to manage ATP levels in the cell. Controlling the upper bound of cellular ATP levels may be a general mechanism used to regulate energy levels in cells, via a regulatory network that can be uncoupled from ATP concentrations under perceived starvation conditions. American Society for Microbiology 2017-08-08 /pmc/articles/PMC5550752/ /pubmed/28790206 http://dx.doi.org/10.1128/mBio.00855-17 Text en Copyright © 2017 Chomvong et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Chomvong, Kulika
Benjamin, Daniel I.
Nomura, Daniel K.
Cate, Jamie H. D.
Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
title Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
title_full Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
title_fullStr Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
title_full_unstemmed Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
title_short Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces cerevisiae
title_sort cellobiose consumption uncouples extracellular glucose sensing and glucose metabolism in saccharomyces cerevisiae
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550752/
https://www.ncbi.nlm.nih.gov/pubmed/28790206
http://dx.doi.org/10.1128/mBio.00855-17
work_keys_str_mv AT chomvongkulika cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminsaccharomycescerevisiae
AT benjamindanieli cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminsaccharomycescerevisiae
AT nomuradanielk cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminsaccharomycescerevisiae
AT catejamiehd cellobioseconsumptionuncouplesextracellularglucosesensingandglucosemetabolisminsaccharomycescerevisiae