Cargando…
Salvianolic acid B protects hepatocytes from H(2)O(2) injury by stabilizing the lysosomal membrane
AIM: To investigate the capability of salvianolic acid B (Sal B) to protect hepatocytes from hydrogen peroxide (H(2)O(2))/carbon tetrachloride (CCl(4))-induced lysosomal membrane permeabilization. METHODS: Cell Counting Kit-8 assay was used to measure cell viability. Apoptosis and death were assayed...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550782/ https://www.ncbi.nlm.nih.gov/pubmed/28839433 http://dx.doi.org/10.3748/wjg.v23.i29.5333 |
Sumario: | AIM: To investigate the capability of salvianolic acid B (Sal B) to protect hepatocytes from hydrogen peroxide (H(2)O(2))/carbon tetrachloride (CCl(4))-induced lysosomal membrane permeabilization. METHODS: Cell Counting Kit-8 assay was used to measure cell viability. Apoptosis and death were assayed through flow cytometry. BrdU incorporation was used to detect cell proliferation. Serum alanine aminotransferase activity and liver malondialdehyde (MDA) content were measured. Liver histopathological changes were evaluated using hematoxylin-eosin staining. Lysosomal membrane permeability was detected with LysoTracker Green-labeled probes and acridine orange staining. The levels of protein carbonyl content (PCC), cathepsins (Cat)B/D, and lysosome-associated membrane protein 1 (LAMP1) were evaluated through western blotting. Cytosol CatB activity analysis was performed with chemiluminescence detection. The mRNA level of LAMP1 was evaluated through quantitative real-time polymerase chain reaction. RESULTS: Results indicated that H(2)O(2) induced cell injury/death. Sal B attenuated H(2)O(2)-induced cell apoptosis and death, restored the inhibition of proliferation, decreased the amount of PCC, and stabilized the lysosome membrane by increasing the LAMP1 protein level and antagonizing CatB/D leakage into the cytosol. CCl(4) also triggered hepatocyte death. Furthermore, Sal B effectively rescued hepatocytes by increasing LAMP1 expression and by reducing lysosomal enzyme translocation to the cytosol. CONCLUSION: Sal B protected mouse embryonic hepatocytes from H(2)O(2)/CCl(4)-induced injury/death by stabilizing the lysosomal membrane. |
---|