Cargando…
Monte Carlo profile confidence intervals for dynamic systems
Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently ex...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550967/ https://www.ncbi.nlm.nih.gov/pubmed/28679663 http://dx.doi.org/10.1098/rsif.2017.0126 |
_version_ | 1783256220396683264 |
---|---|
author | Ionides, E. L. Breto, C. Park, J. Smith, R. A. King, A. A. |
author_facet | Ionides, E. L. Breto, C. Park, J. Smith, R. A. King, A. A. |
author_sort | Ionides, E. L. |
collection | PubMed |
description | Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently exhaustive computation, then the standard theory and practice of likelihood-based inference applies. As datasets become larger, and models more complex, situations arise where no reasonable amount of computation can render Monte Carlo error negligible. We develop profile likelihood methodology to provide frequentist inferences that take into account Monte Carlo uncertainty. We investigate the role of this methodology in facilitating inference for computationally challenging dynamic latent variable models. We present examples arising in the study of infectious disease transmission, demonstrating our methodology for inference on nonlinear dynamic models using genetic sequence data and panel time-series data. We also discuss applicability to nonlinear time-series and spatio-temporal data. |
format | Online Article Text |
id | pubmed-5550967 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-55509672017-08-11 Monte Carlo profile confidence intervals for dynamic systems Ionides, E. L. Breto, C. Park, J. Smith, R. A. King, A. A. J R Soc Interface Life Sciences–Mathematics interface Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently exhaustive computation, then the standard theory and practice of likelihood-based inference applies. As datasets become larger, and models more complex, situations arise where no reasonable amount of computation can render Monte Carlo error negligible. We develop profile likelihood methodology to provide frequentist inferences that take into account Monte Carlo uncertainty. We investigate the role of this methodology in facilitating inference for computationally challenging dynamic latent variable models. We present examples arising in the study of infectious disease transmission, demonstrating our methodology for inference on nonlinear dynamic models using genetic sequence data and panel time-series data. We also discuss applicability to nonlinear time-series and spatio-temporal data. The Royal Society 2017-07 2017-07-05 /pmc/articles/PMC5550967/ /pubmed/28679663 http://dx.doi.org/10.1098/rsif.2017.0126 Text en © 2017 The Author(s). http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Life Sciences–Mathematics interface Ionides, E. L. Breto, C. Park, J. Smith, R. A. King, A. A. Monte Carlo profile confidence intervals for dynamic systems |
title | Monte Carlo profile confidence intervals for dynamic systems |
title_full | Monte Carlo profile confidence intervals for dynamic systems |
title_fullStr | Monte Carlo profile confidence intervals for dynamic systems |
title_full_unstemmed | Monte Carlo profile confidence intervals for dynamic systems |
title_short | Monte Carlo profile confidence intervals for dynamic systems |
title_sort | monte carlo profile confidence intervals for dynamic systems |
topic | Life Sciences–Mathematics interface |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550967/ https://www.ncbi.nlm.nih.gov/pubmed/28679663 http://dx.doi.org/10.1098/rsif.2017.0126 |
work_keys_str_mv | AT ionidesel montecarloprofileconfidenceintervalsfordynamicsystems AT bretoc montecarloprofileconfidenceintervalsfordynamicsystems AT parkj montecarloprofileconfidenceintervalsfordynamicsystems AT smithra montecarloprofileconfidenceintervalsfordynamicsystems AT kingaa montecarloprofileconfidenceintervalsfordynamicsystems |