Cargando…

Monte Carlo profile confidence intervals for dynamic systems

Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Ionides, E. L., Breto, C., Park, J., Smith, R. A., King, A. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550967/
https://www.ncbi.nlm.nih.gov/pubmed/28679663
http://dx.doi.org/10.1098/rsif.2017.0126
_version_ 1783256220396683264
author Ionides, E. L.
Breto, C.
Park, J.
Smith, R. A.
King, A. A.
author_facet Ionides, E. L.
Breto, C.
Park, J.
Smith, R. A.
King, A. A.
author_sort Ionides, E. L.
collection PubMed
description Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently exhaustive computation, then the standard theory and practice of likelihood-based inference applies. As datasets become larger, and models more complex, situations arise where no reasonable amount of computation can render Monte Carlo error negligible. We develop profile likelihood methodology to provide frequentist inferences that take into account Monte Carlo uncertainty. We investigate the role of this methodology in facilitating inference for computationally challenging dynamic latent variable models. We present examples arising in the study of infectious disease transmission, demonstrating our methodology for inference on nonlinear dynamic models using genetic sequence data and panel time-series data. We also discuss applicability to nonlinear time-series and spatio-temporal data.
format Online
Article
Text
id pubmed-5550967
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-55509672017-08-11 Monte Carlo profile confidence intervals for dynamic systems Ionides, E. L. Breto, C. Park, J. Smith, R. A. King, A. A. J R Soc Interface Life Sciences–Mathematics interface Monte Carlo methods to evaluate and maximize the likelihood function enable the construction of confidence intervals and hypothesis tests, facilitating scientific investigation using models for which the likelihood function is intractable. When Monte Carlo error can be made small, by sufficiently exhaustive computation, then the standard theory and practice of likelihood-based inference applies. As datasets become larger, and models more complex, situations arise where no reasonable amount of computation can render Monte Carlo error negligible. We develop profile likelihood methodology to provide frequentist inferences that take into account Monte Carlo uncertainty. We investigate the role of this methodology in facilitating inference for computationally challenging dynamic latent variable models. We present examples arising in the study of infectious disease transmission, demonstrating our methodology for inference on nonlinear dynamic models using genetic sequence data and panel time-series data. We also discuss applicability to nonlinear time-series and spatio-temporal data. The Royal Society 2017-07 2017-07-05 /pmc/articles/PMC5550967/ /pubmed/28679663 http://dx.doi.org/10.1098/rsif.2017.0126 Text en © 2017 The Author(s). http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Life Sciences–Mathematics interface
Ionides, E. L.
Breto, C.
Park, J.
Smith, R. A.
King, A. A.
Monte Carlo profile confidence intervals for dynamic systems
title Monte Carlo profile confidence intervals for dynamic systems
title_full Monte Carlo profile confidence intervals for dynamic systems
title_fullStr Monte Carlo profile confidence intervals for dynamic systems
title_full_unstemmed Monte Carlo profile confidence intervals for dynamic systems
title_short Monte Carlo profile confidence intervals for dynamic systems
title_sort monte carlo profile confidence intervals for dynamic systems
topic Life Sciences–Mathematics interface
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5550967/
https://www.ncbi.nlm.nih.gov/pubmed/28679663
http://dx.doi.org/10.1098/rsif.2017.0126
work_keys_str_mv AT ionidesel montecarloprofileconfidenceintervalsfordynamicsystems
AT bretoc montecarloprofileconfidenceintervalsfordynamicsystems
AT parkj montecarloprofileconfidenceintervalsfordynamicsystems
AT smithra montecarloprofileconfidenceintervalsfordynamicsystems
AT kingaa montecarloprofileconfidenceintervalsfordynamicsystems