Cargando…

Subarachnoid small vein occlusion due to inflammatory fibrosis—a possible mechanism for cerebellar infarction in cryptococcal meningoencephalitis: a case report

BACKGROUND: Cryptococcal meningoencephalitis (CM) causes cerebral infarction, typically, lacunar infarction in the basal ganglia. However, massive cerebral infarction leading to death is rare and its pathophysiology is unclear. We report a case of CM causing massive cerebellar infarction, which led...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimoda, Yoshiteru, Ohtomo, Satoru, Arai, Hiroaki, Ohtoh, Takashi, Tominaga, Teiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551018/
https://www.ncbi.nlm.nih.gov/pubmed/28793877
http://dx.doi.org/10.1186/s12883-017-0934-y
Descripción
Sumario:BACKGROUND: Cryptococcal meningoencephalitis (CM) causes cerebral infarction, typically, lacunar infarction in the basal ganglia. However, massive cerebral infarction leading to death is rare and its pathophysiology is unclear. We report a case of CM causing massive cerebellar infarction, which led to cerebral herniation and death. CASE PRESENTATION: A 56-year-old man who suffered from dizziness and gait disturbance for one month was admitted to our hospital and subsequently diagnosed with a cerebellar infarction. He had a past medical history of hepatitis type B virus infection and hepatic failure. Although the findings on magnetic resonance imaging (MRI) imitated an arterial infarction of the posterior inferior cerebellar artery, an accompanying irregular peripheral edema was observed. The ischemic lesion progressed, subsequently exerting a mass effect and leading to impaired consciousness. External and internal decompression surgeries were performed. Cryptococcus neoformans was confirmed in the surgical specimen, and the patient was diagnosed with CM. In addition, venule congestion in the parenchyma was observed with extensive fibrosis and compressed veins in the subarachnoid space. The patient died 26 days after admission. Autopsy revealed that pathological changes were localized in the cerebellum. CONCLUSION: C. neoformans can induce extensive fibrosis of the subarachnoid space, which may compress small veins mechanically inducing venule congestion and massive cerebral infarction. In such cases, the clinical course can be severe and even rapidly fatal. An atypical pattern of infarction on MRI should alert clinicians to the possibility of C. neoformans infection.