Cargando…
Day-Ahead PM(2.5) Concentration Forecasting Using WT-VMD Based Decomposition Method and Back Propagation Neural Network Improved by Differential Evolution
Accurate PM(2.5) concentration forecasting is crucial for protecting public health and atmospheric environment. However, the intermittent and unstable nature of PM(2.5) concentration series makes its forecasting become a very difficult task. In order to improve the forecast accuracy of PM(2.5) conce...
Autores principales: | Wang, Deyun, Liu, Yanling, Luo, Hongyuan, Yue, Chenqiang, Cheng, Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551202/ https://www.ncbi.nlm.nih.gov/pubmed/28704955 http://dx.doi.org/10.3390/ijerph14070764 |
Ejemplares similares
-
Research on a Novel Hybrid Decomposition–Ensemble Learning Paradigm Based on VMD and IWOA for PM(2.5) Forecasting
por: Guo, Hengliang, et al.
Publicado: (2021) -
New Denoising Method for Lidar Signal by the WT-VMD Joint Algorithm
por: Wang, Zhenzhu, et al.
Publicado: (2022) -
PM2.5 forecasting for an urban area based on deep learning and decomposition method
por: Zaini, Nur’atiah, et al.
Publicado: (2022) -
Comparative study of rainfall prediction based on different decomposition methods of VMD
por: Zhang, Xianqi, et al.
Publicado: (2023) -
Estimation of PM2.5 Concentrations in China Using a Spatial Back Propagation Neural Network
por: Wang, Weilin, et al.
Publicado: (2019)