Cargando…

Physiological Effects of Touching Wood

This study aimed to clarify the physiological effects of touching wood with the palm, in comparison with touching other materials on brain activity and autonomic nervous activity. Eighteen female university students (mean age, 21.7  ±  1.6 years) participated in the study. As an indicator of brain a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikei, Harumi, Song, Chorong, Miyazaki, Yoshifumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551239/
https://www.ncbi.nlm.nih.gov/pubmed/28718814
http://dx.doi.org/10.3390/ijerph14070801
Descripción
Sumario:This study aimed to clarify the physiological effects of touching wood with the palm, in comparison with touching other materials on brain activity and autonomic nervous activity. Eighteen female university students (mean age, 21.7  ±  1.6 years) participated in the study. As an indicator of brain activity, oxyhemoglobin (oxy-Hb) concentrations were measured in the left/right prefrontal cortex using near-infrared time-resolved spectroscopy. Heart rate variability (HRV) was used as an indicator of autonomic nervous activity. The high-frequency (HF) component of HRV, which reflected parasympathetic nervous activity, and the low-frequency (LF)/HF ratio, which reflected sympathetic nervous activity, were measured. Plates of uncoated white oak, marble, tile, and stainless steel were used as tactile stimuli. After sitting at rest with their eyes closed, participants touched the materials for 90 s. As a result, tactile stimulation with white oak significantly (1) decreased the oxy-Hb concentration in the left/right prefrontal cortex relative to marble, tile, and stainless steel and (2) increased ln(HF)-reflected parasympathetic nervous activity relative to marble and stainless steel. In conclusion, our study revealed that touching wood with the palm calms prefrontal cortex activity and induces parasympathetic nervous activity more than other materials, thereby inducing physiological relaxation.