Cargando…
A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine
Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer...
Autores principales: | Bahrami, Sheyda, Shamsi, Mousa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551299/ https://www.ncbi.nlm.nih.gov/pubmed/28840116 |
Ejemplares similares
-
Random support vector machine cluster analysis of resting-state fMRI in Alzheimer's disease
por: Bi, Xia-an, et al.
Publicado: (2018) -
Support Vector Machine for Analyzing Contributions of Brain Regions During Task-State fMRI
por: Wang, Mengyue, et al.
Publicado: (2019) -
Application of Support Vector Machine on fMRI Data as Biomarkers in Schizophrenia Diagnosis: A Systematic Review
por: Steardo, Luca, et al.
Publicado: (2020) -
Decoding Semi-Constrained Brain Activity from fMRI Using Support Vector Machines and Gaussian Processes
por: Schrouff, Jessica, et al.
Publicado: (2012) -
Weighted Random Support Vector Machine Clusters Analysis of Resting-State fMRI in Mild Cognitive Impairment
por: Bi, Xia-an, et al.
Publicado: (2018)