Cargando…

Biosynthetic PCL-graft-Collagen Bulk Material for Tissue Engineering Applications

Biosynthetic materials have emerged as one of the most exciting and productive fields in polymer chemistry due to their widespread adoption and potential applications in tissue engineering (TE) research. In this work, we report the synthesis of a poly(ε-caprolactone)-graft-collagen (PCL-g-Coll) copo...

Descripción completa

Detalles Bibliográficos
Autores principales: Gentile, Piergiorgio, McColgan-Bannon, Kegan, Gianone, Nicolò Ceretto, Sefat, Farshid, Dalgarno, Kenneth, Ferreira, Ana Marina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551736/
https://www.ncbi.nlm.nih.gov/pubmed/28773053
http://dx.doi.org/10.3390/ma10070693
Descripción
Sumario:Biosynthetic materials have emerged as one of the most exciting and productive fields in polymer chemistry due to their widespread adoption and potential applications in tissue engineering (TE) research. In this work, we report the synthesis of a poly(ε-caprolactone)-graft-collagen (PCL-g-Coll) copolymer. We combine its good mechanical and biodegradable PCL properties with the great biological properties of type I collagen as a functional material for TE. PCL, previously dissolved in dimethylformamide/dichloromethane mixture, and reacted with collagen using carbodiimide coupling chemistry. The synthesised material was characterised physically, chemically and biologically, using pure PCL and PCL/Coll blend samples as control. Infrared spectroscopy evidenced the presence of amide I and II peaks for the conjugated material. Similarly, XPS evidenced the presence of C–N and N–C=O bonds (8.96 ± 2.02% and 8.52 ± 0.63%; respectively) for PCL-g-Coll. Static contact angles showed a slight decrease in the conjugated sample. However, good biocompatibility and metabolic activity was obtained on PCL-g-Coll films compared to PCL and blend controls. After 3 days of culture, fibroblasts exhibited a spindle-like morphology, spreading homogeneously along the PCL-g-Coll film surface. We have engineered a functional biosynthetic polymer that can be processed by electrospinning.