Cargando…
Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators
Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin–orbit coupling. Such topological phase transitions are unique in nature as they lead to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551853/ https://www.ncbi.nlm.nih.gov/pubmed/28773171 http://dx.doi.org/10.3390/ma10070810 |
_version_ | 1783256371012042752 |
---|---|
author | Battiato, Marco Aguilera, Irene Sánchez-Barriga, Jaime |
author_facet | Battiato, Marco Aguilera, Irene Sánchez-Barriga, Jaime |
author_sort | Battiato, Marco |
collection | PubMed |
description | Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin–orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized [Formula: see text] +Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron–electron and electron–phonon scatterings. Taking the prototypical insulator Bi [Formula: see text] Te [Formula: see text] as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron–electron and electron–phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials. |
format | Online Article Text |
id | pubmed-5551853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-55518532017-08-11 Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators Battiato, Marco Aguilera, Irene Sánchez-Barriga, Jaime Materials (Basel) Article Quantum-phase transitions between trivial insulators and topological insulators differ from ordinary metal-insulator transitions in that they arise from the inversion of the bulk band structure due to strong spin–orbit coupling. Such topological phase transitions are unique in nature as they lead to the emergence of topological surface states which are characterized by a peculiar spin texture that is believed to play a central role in the generation and manipulation of dissipationless surface spin currents on ultrafast timescales. Here, we provide a generalized [Formula: see text] +Boltzmann approach for the description of ultrafast dynamics in topological insulators driven by electron–electron and electron–phonon scatterings. Taking the prototypical insulator Bi [Formula: see text] Te [Formula: see text] as an example, we test the robustness of our approach by comparing the theoretical prediction to results of time- and angle-resolved photoemission experiments. From this comparison, we are able to demonstrate the crucial role of the excited spin texture in the subpicosecond relaxation of transient electrons, as well as to accurately obtain the magnitude and strength of electron–electron and electron–phonon couplings. Our approach could be used as a generalized theory for three-dimensional topological insulators in the bulk-conducting transport regime, paving the way for the realization of a unified theory of ultrafast dynamics in topological materials. MDPI 2017-07-17 /pmc/articles/PMC5551853/ /pubmed/28773171 http://dx.doi.org/10.3390/ma10070810 Text en © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Battiato, Marco Aguilera, Irene Sánchez-Barriga, Jaime Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators |
title | Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators |
title_full | Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators |
title_fullStr | Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators |
title_full_unstemmed | Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators |
title_short | Generalized GW+Boltzmann Approach for the Description of Ultrafast Electron Dynamics in Topological Insulators |
title_sort | generalized gw+boltzmann approach for the description of ultrafast electron dynamics in topological insulators |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551853/ https://www.ncbi.nlm.nih.gov/pubmed/28773171 http://dx.doi.org/10.3390/ma10070810 |
work_keys_str_mv | AT battiatomarco generalizedgwboltzmannapproachforthedescriptionofultrafastelectrondynamicsintopologicalinsulators AT aguilerairene generalizedgwboltzmannapproachforthedescriptionofultrafastelectrondynamicsintopologicalinsulators AT sanchezbarrigajaime generalizedgwboltzmannapproachforthedescriptionofultrafastelectrondynamicsintopologicalinsulators |