Cargando…

Yes, research matters

My father was diagnosed with stomach cancer recently. Luckily, it was still at an early stage, and endoscopic surgery successfully took care of it. My father was fortunate; since people with stomach cancer do not show clear symptoms in the early stages, the disease is often not diagnosed until it be...

Descripción completa

Detalles Bibliográficos
Autor principal: Shinohara, Mari L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552019/
https://www.ncbi.nlm.nih.gov/pubmed/28796840
http://dx.doi.org/10.1371/journal.ppat.1006420
_version_ 1783256395720687616
author Shinohara, Mari L.
author_facet Shinohara, Mari L.
author_sort Shinohara, Mari L.
collection PubMed
description My father was diagnosed with stomach cancer recently. Luckily, it was still at an early stage, and endoscopic surgery successfully took care of it. My father was fortunate; since people with stomach cancer do not show clear symptoms in the early stages, the disease is often not diagnosed until it becomes advanced. In his case, the diagnosis started from a suggestion by his doctor to check whether he had a gastric infection with Helicobacter pylori, a bacterial species found in the digestive tract. In Japan, where he lives, a majority of gastric cancer patients (more than 99%) have been infected with H. pylori [1], and the causative role of this bacterial species in promoting gastric cancer is very well established. Now, scientific understanding connecting gastric cancer to H. pylori is saving the lives of many people, including my father. Thinking about this recent personal experience, I wonder if the connection between bacteria and cancer might have been considered a crazy idea decades ago. Research makes it possible to connect seemingly unrelated matters. My laboratory works on seemingly unrelated research topics, such as fungal infections and autoimmunity. However, my question is the same whatever the topic: How do leukocytes elicit and regulate inflammation when they detect infections or endogenous signals? In fact, host receptors detecting pathogens can induce autoimmunity, and autoimmunity alters host sensitivity to pathogens due to the imbalance in the immune system. We are beginning to gain some insight into this question, as revealed by some of our recent studies. For example, the NLR family, pyrin domain containing 3 (NLRP3) inflammasome, which is known to sense a wide variety of pathogens, can also change the course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In particular, our study suggested that disease treatment approaches need to be changed based on the activation status of the NLRP3 inflammasome [2]. Another recent study from our laboratory demonstrated that a protein, termed osteopontin (OPN), skews the balance of population sizes between myeloid cells (i.e., innate immunity) and lymphoid cells (i.e., adaptive immunity) during infections and other biological insults [3]. An intracellular isoform of OPN (iOPN) negatively regulates emergency myelopoiesis. Thus, OPN attenuates host resistance by limiting neutrophil supply at the early stage of systemic Candida infection. In contrast, a secreted OPN (sOPN) isoform positively regulates the expansion of T lymphocytes and ends up triggering autoimmune colitis. I am an immunologist but obtained my PhD in mycology. Nevertheless, it took some time for me to appreciate that research enables us to connect the dots placed far apart. This is a truly exciting time to connect seemingly unrelated biological phenomena, because scientists are exponentially increasing our understanding of nature. This is particularly true in innate immunity, which is not only the central alarming system in host–microbe interactions but also relates to almost any human disease we can imagine. However, we are facing a dark age for science and research, in which certain interests wrongfully discredit some research fields. There are things that can be achieved only by research. I am always ready to tell anyone, “Yes, research matters!”.
format Online
Article
Text
id pubmed-5552019
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-55520192017-08-25 Yes, research matters Shinohara, Mari L. PLoS Pathog Research Matters My father was diagnosed with stomach cancer recently. Luckily, it was still at an early stage, and endoscopic surgery successfully took care of it. My father was fortunate; since people with stomach cancer do not show clear symptoms in the early stages, the disease is often not diagnosed until it becomes advanced. In his case, the diagnosis started from a suggestion by his doctor to check whether he had a gastric infection with Helicobacter pylori, a bacterial species found in the digestive tract. In Japan, where he lives, a majority of gastric cancer patients (more than 99%) have been infected with H. pylori [1], and the causative role of this bacterial species in promoting gastric cancer is very well established. Now, scientific understanding connecting gastric cancer to H. pylori is saving the lives of many people, including my father. Thinking about this recent personal experience, I wonder if the connection between bacteria and cancer might have been considered a crazy idea decades ago. Research makes it possible to connect seemingly unrelated matters. My laboratory works on seemingly unrelated research topics, such as fungal infections and autoimmunity. However, my question is the same whatever the topic: How do leukocytes elicit and regulate inflammation when they detect infections or endogenous signals? In fact, host receptors detecting pathogens can induce autoimmunity, and autoimmunity alters host sensitivity to pathogens due to the imbalance in the immune system. We are beginning to gain some insight into this question, as revealed by some of our recent studies. For example, the NLR family, pyrin domain containing 3 (NLRP3) inflammasome, which is known to sense a wide variety of pathogens, can also change the course of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). In particular, our study suggested that disease treatment approaches need to be changed based on the activation status of the NLRP3 inflammasome [2]. Another recent study from our laboratory demonstrated that a protein, termed osteopontin (OPN), skews the balance of population sizes between myeloid cells (i.e., innate immunity) and lymphoid cells (i.e., adaptive immunity) during infections and other biological insults [3]. An intracellular isoform of OPN (iOPN) negatively regulates emergency myelopoiesis. Thus, OPN attenuates host resistance by limiting neutrophil supply at the early stage of systemic Candida infection. In contrast, a secreted OPN (sOPN) isoform positively regulates the expansion of T lymphocytes and ends up triggering autoimmune colitis. I am an immunologist but obtained my PhD in mycology. Nevertheless, it took some time for me to appreciate that research enables us to connect the dots placed far apart. This is a truly exciting time to connect seemingly unrelated biological phenomena, because scientists are exponentially increasing our understanding of nature. This is particularly true in innate immunity, which is not only the central alarming system in host–microbe interactions but also relates to almost any human disease we can imagine. However, we are facing a dark age for science and research, in which certain interests wrongfully discredit some research fields. There are things that can be achieved only by research. I am always ready to tell anyone, “Yes, research matters!”. Public Library of Science 2017-08-10 /pmc/articles/PMC5552019/ /pubmed/28796840 http://dx.doi.org/10.1371/journal.ppat.1006420 Text en © 2017 Mari L. Shinohara http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Matters
Shinohara, Mari L.
Yes, research matters
title Yes, research matters
title_full Yes, research matters
title_fullStr Yes, research matters
title_full_unstemmed Yes, research matters
title_short Yes, research matters
title_sort yes, research matters
topic Research Matters
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552019/
https://www.ncbi.nlm.nih.gov/pubmed/28796840
http://dx.doi.org/10.1371/journal.ppat.1006420
work_keys_str_mv AT shinoharamaril yesresearchmatters