Cargando…

Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups,...

Descripción completa

Detalles Bibliográficos
Autores principales: Higgins, Irina, Stringer, Simon, Schnupp, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552261/
https://www.ncbi.nlm.nih.gov/pubmed/28797034
http://dx.doi.org/10.1371/journal.pone.0180174
Descripción
Sumario:The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.