Cargando…
Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain
The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups,...
Autores principales: | Higgins, Irina, Stringer, Simon, Schnupp, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552261/ https://www.ncbi.nlm.nih.gov/pubmed/28797034 http://dx.doi.org/10.1371/journal.pone.0180174 |
Ejemplares similares
-
Optimal features for auditory categorization
por: Liu, Shi Tong, et al.
Publicado: (2019) -
Harmonic Training and the Formation of Pitch Representation in a Neural Network Model of the Auditory Brain
por: Ahmad, Nasir, et al.
Publicado: (2016) -
Neural Correlates of Auditory Pattern Learning in the Auditory Cortex
por: Kang, Hijee, et al.
Publicado: (2021) -
Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity
por: Masquelier, Timothée, et al.
Publicado: (2007) -
Neural Resolution of Formant Frequencies in the Primary Auditory Cortex of Rats
por: Honey, Christian, et al.
Publicado: (2015)