Cargando…
Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy
BACKGROUND: High throughput sequencing technologies have revolutionized the identification of mutations responsible for genetic diseases such as hypertrophic cardiomyopathy (HCM). However, approximately 50% of individuals with a clinical diagnosis of HCM have no causal mutation identified. This may...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552324/ https://www.ncbi.nlm.nih.gov/pubmed/28797094 http://dx.doi.org/10.1371/journal.pone.0182946 |
_version_ | 1783256454855131136 |
---|---|
author | Mendes de Almeida, Rita Tavares, Joana Martins, Sandra Carvalho, Teresa Enguita, Francisco J. Brito, Dulce Carmo-Fonseca, Maria Lopes, Luís Rocha |
author_facet | Mendes de Almeida, Rita Tavares, Joana Martins, Sandra Carvalho, Teresa Enguita, Francisco J. Brito, Dulce Carmo-Fonseca, Maria Lopes, Luís Rocha |
author_sort | Mendes de Almeida, Rita |
collection | PubMed |
description | BACKGROUND: High throughput sequencing technologies have revolutionized the identification of mutations responsible for genetic diseases such as hypertrophic cardiomyopathy (HCM). However, approximately 50% of individuals with a clinical diagnosis of HCM have no causal mutation identified. This may be due to the presence of pathogenic mutations located deep within the introns, which are not detected by conventional sequencing analysis restricted to exons and exon-intron boundaries. OBJECTIVE: The aim of this study was to develop a whole-gene sequencing strategy to prioritize deep intronic variants that may play a role in HCM pathogenesis. METHODS AND RESULTS: The full genomic DNA sequence of 26 genes previously associated with HCM was analysed in 16 unrelated patients. We identified likely pathogenic deep intronic variants in VCL, PRKAG2 and TTN genes. These variants, which are predicted to act through disruption of either splicing or transcription factor binding sites, are 3-fold more frequent in our cohort of probands than in normal European populations. Moreover, we found a patient that is compound heterozygous for a splice site mutation in MYBPC3 and the deep intronic VCL variant. Analysis of family members revealed that carriers of the MYBPC3 mutation alone do not manifest the disease, while family members that are compound heterozygous are clinically affected. CONCLUSION: This study provides a framework for scrutinizing variation along the complete intronic sequence of HCM-associated genes and prioritizing candidates for mechanistic and functional analysis. Our data suggest that deep intronic variation contributes to HCM phenotype. |
format | Online Article Text |
id | pubmed-5552324 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-55523242017-08-25 Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy Mendes de Almeida, Rita Tavares, Joana Martins, Sandra Carvalho, Teresa Enguita, Francisco J. Brito, Dulce Carmo-Fonseca, Maria Lopes, Luís Rocha PLoS One Research Article BACKGROUND: High throughput sequencing technologies have revolutionized the identification of mutations responsible for genetic diseases such as hypertrophic cardiomyopathy (HCM). However, approximately 50% of individuals with a clinical diagnosis of HCM have no causal mutation identified. This may be due to the presence of pathogenic mutations located deep within the introns, which are not detected by conventional sequencing analysis restricted to exons and exon-intron boundaries. OBJECTIVE: The aim of this study was to develop a whole-gene sequencing strategy to prioritize deep intronic variants that may play a role in HCM pathogenesis. METHODS AND RESULTS: The full genomic DNA sequence of 26 genes previously associated with HCM was analysed in 16 unrelated patients. We identified likely pathogenic deep intronic variants in VCL, PRKAG2 and TTN genes. These variants, which are predicted to act through disruption of either splicing or transcription factor binding sites, are 3-fold more frequent in our cohort of probands than in normal European populations. Moreover, we found a patient that is compound heterozygous for a splice site mutation in MYBPC3 and the deep intronic VCL variant. Analysis of family members revealed that carriers of the MYBPC3 mutation alone do not manifest the disease, while family members that are compound heterozygous are clinically affected. CONCLUSION: This study provides a framework for scrutinizing variation along the complete intronic sequence of HCM-associated genes and prioritizing candidates for mechanistic and functional analysis. Our data suggest that deep intronic variation contributes to HCM phenotype. Public Library of Science 2017-08-10 /pmc/articles/PMC5552324/ /pubmed/28797094 http://dx.doi.org/10.1371/journal.pone.0182946 Text en © 2017 Mendes de Almeida et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Mendes de Almeida, Rita Tavares, Joana Martins, Sandra Carvalho, Teresa Enguita, Francisco J. Brito, Dulce Carmo-Fonseca, Maria Lopes, Luís Rocha Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy |
title | Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy |
title_full | Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy |
title_fullStr | Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy |
title_full_unstemmed | Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy |
title_short | Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy |
title_sort | whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552324/ https://www.ncbi.nlm.nih.gov/pubmed/28797094 http://dx.doi.org/10.1371/journal.pone.0182946 |
work_keys_str_mv | AT mendesdealmeidarita wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy AT tavaresjoana wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy AT martinssandra wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy AT carvalhoteresa wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy AT enguitafranciscoj wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy AT britodulce wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy AT carmofonsecamaria wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy AT lopesluisrocha wholegenesequencingidentifiesdeepintronicvariantswithpotentialfunctionalimpactinpatientswithhypertrophiccardiomyopathy |