Cargando…
A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks
We compare three state-of-the-art Bayesian inference methods for the estimation of the unknown parameters in a stochastic model of a genetic network. In particular, we introduce a stochastic version of the paradigmatic synthetic multicellular clock model proposed by Ullner et al., 2007. By introduci...
Autores principales: | Mariño, Inés P., Zaikin, Alexey, Míguez, Joaquín |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552360/ https://www.ncbi.nlm.nih.gov/pubmed/28797087 http://dx.doi.org/10.1371/journal.pone.0182015 |
Ejemplares similares
-
Parameter Estimation Methods for Chaotic Intercellular Networks
por: Mariño, Inés P., et al.
Publicado: (2013) -
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
Monte Carlo methods in Bayesian computation
por: Chen, Ming-Hui, et al.
Publicado: (2000) -
Monte Carlo methods in Bayesian computation /
por: Chen, Ming-Hui, 1961-
Publicado: (2000) -
Stochastic simulation and Monte Carlo methods: mathematical foundations of stochastic simulation
por: Graham, Carl, et al.
Publicado: (2013)