Cargando…
A Highly Sensitive Electrochemical DNA Biosensor from Acrylic-Gold Nano-composite for the Determination of Arowana Fish Gender
The present research describes a simple method for the identification of the gender of arowana fish (Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nan...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552624/ https://www.ncbi.nlm.nih.gov/pubmed/28798991 http://dx.doi.org/10.1186/s11671-017-2254-y |
Sumario: | The present research describes a simple method for the identification of the gender of arowana fish (Scleropages formosus). The DNA biosensor was able to detect specific DNA sequence at extremely low level down to atto M regimes. An electrochemical DNA biosensor based on acrylic microsphere-gold nanoparticle (AcMP-AuNP) hybrid composite was fabricated. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesised with a facile and well-established one-step photopolymerization procedure and physically adsorbed on the AuNPs at the surface of a carbon screen printed electrode (SPE). The DNA biosensor was constructed simply by grafting an aminated DNA probe on the succinimide functionalised AcMPs via a strong covalent attachment. DNA hybridisation response was determined by differential pulse voltammetry (DPV) technique using anthraquinone monosulphonic acid redox probe as an electroactive oligonucleotide label (Table 1). A low detection limit at 1.0 × 10(−18) M with a wide linear calibration range of 1.0 × 10(−18) to 1.0 × 10(−8) M (R (2) = 0.99) can be achieved by the proposed DNA biosensor under optimal conditions. Electrochemical detection of arowana DNA can be completed within 1 hour. Due to its small size and light weight, the developed DNA biosensor holds high promise for the development of functional kit for fish culture usage. |
---|