Cargando…
Oxidative coupling of sp(2) and sp(3) carbon–hydrogen bonds to construct dihydrobenzofurans
Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon–carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon–hydrogen bond...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552783/ https://www.ncbi.nlm.nih.gov/pubmed/28798314 http://dx.doi.org/10.1038/s41467-017-00078-6 |
Sumario: | Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon–carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon–hydrogen bond. From an economic and environmental point of view, oxidative couplings between two carbon–hydrogen bonds would be ideal. Oxidative coupling between phenyl and “inert” alkyl carbon–hydrogen bonds still awaits realization. It is very difficult to develop successful strategies for oxidative coupling of two carbon–hydrogen bonds owning different chemical properties. This article provides a solution to this challenge in a convenient preparation of dihydrobenzofurans from substituted phenyl alkyl ethers. For the phenyl carbon–hydrogen bond activation, our choice falls on the carboxylic acid fragment to form the palladacycle as a key intermediate. Through careful manipulation of an additional ligand, the second “inert” alkyl carbon–hydrogen bond activation takes place to facilitate the formation of structurally diversified dihydrobenzofurans. |
---|