Cargando…

Early metabolic markers identify potential targets for the prevention of type 2 diabetes

AIMS/HYPOTHESIS: The aims of this study were to evaluate systematically the predictive power of comprehensive metabolomics profiles in predicting the future risk of type 2 diabetes, and to identify a panel of the most predictive metabolic markers. METHODS: We applied an unbiased systems medicine app...

Descripción completa

Detalles Bibliográficos
Autores principales: Peddinti, Gopal, Cobb, Jeff, Yengo, Loic, Froguel, Philippe, Kravić, Jasmina, Balkau, Beverley, Tuomi, Tiinamaija, Aittokallio, Tero, Groop, Leif
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552834/
https://www.ncbi.nlm.nih.gov/pubmed/28597074
http://dx.doi.org/10.1007/s00125-017-4325-0
Descripción
Sumario:AIMS/HYPOTHESIS: The aims of this study were to evaluate systematically the predictive power of comprehensive metabolomics profiles in predicting the future risk of type 2 diabetes, and to identify a panel of the most predictive metabolic markers. METHODS: We applied an unbiased systems medicine approach to mine metabolite combinations that provide added value in predicting the future incidence of type 2 diabetes beyond known risk factors. We performed mass spectrometry-based targeted, as well as global untargeted, metabolomics, measuring a total of 568 metabolites, in a Finnish cohort of 543 non-diabetic individuals from the Botnia Prospective Study, which included 146 individuals who progressed to type 2 diabetes by the end of a 10 year follow-up period. Multivariate logistic regression was used to assess statistical associations, and regularised least-squares modelling was used to perform machine learning-based risk classification and marker selection. The predictive performance of the machine learning models and marker panels was evaluated using repeated nested cross-validation, and replicated in an independent French cohort of 1044 individuals including 231 participants who progressed to type 2 diabetes during a 9 year follow-up period in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) study. RESULTS: Nine metabolites were negatively associated (potentially protective) and 25 were positively associated with progression to type 2 diabetes. Machine learning models based on the entire metabolome predicted progression to type 2 diabetes (area under the receiver operating characteristic curve, AUC = 0.77) significantly better than the reference model based on clinical risk factors alone (AUC = 0.68; DeLong’s p = 0.0009). The panel of metabolic markers selected by the machine learning-based feature selection also significantly improved the predictive performance over the reference model (AUC = 0.78; p = 0.00019; integrated discrimination improvement, IDI = 66.7%). This approach identified novel predictive biomarkers, such as α-tocopherol, bradykinin hydroxyproline, X-12063 and X-13435, which showed added value in predicting progression to type 2 diabetes when combined with known biomarkers such as glucose, mannose and α-hydroxybutyrate and routinely used clinical risk factors. CONCLUSIONS/INTERPRETATION: This study provides a panel of novel metabolic markers for future efforts aimed at the prevention of type 2 diabetes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-017-4325-0) contains peer-reviewed but unedited supplementary material, which is available to authorised users.