Cargando…

Revealing extracellular electron transfer mediated parasitism: energetic considerations

Extracellular electron transfer (EET) is a mechanism that allows energetic coupling between two microorganisms or between a microorganism and an electrode surface. EET is either supported by direct physical contacts or mediated by electron shuttles. So far, studies dealing with interspecies EET (so-...

Descripción completa

Detalles Bibliográficos
Autores principales: Moscoviz, Roman, Flayac, Clément, Desmond-Le Quéméner, Elie, Trably, Eric, Bernet, Nicolas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552874/
https://www.ncbi.nlm.nih.gov/pubmed/28798305
http://dx.doi.org/10.1038/s41598-017-07593-y
Descripción
Sumario:Extracellular electron transfer (EET) is a mechanism that allows energetic coupling between two microorganisms or between a microorganism and an electrode surface. EET is either supported by direct physical contacts or mediated by electron shuttles. So far, studies dealing with interspecies EET (so-called IET) have mainly focused on possible syntrophic interactions between microorganisms favoured by this mechanism. In this article, the case of fermentative bacteria receiving extracellular electrons while fermenting a substrate is considered. A thermodynamical analysis based on metabolic energy balances was applied to re-investigate experimental data from the literature. Results suggest that the observations of a decrease of cell biomass yields of fermentative electron-accepting species, as mostly reported, can be unravelled by EET energetics and correspond to parasitism in case of IET. As an illustration, the growth yield decrease of Propionibacterium freudenreichii (−14%) observed in electro-fermentation experiments was fully explained by EET energetics when electrons were used by this species at a potential of −0.12 ± 0.01 V vs SHE. Analysis of other cases showed that, in addition to EET energetics in Clostridium pasteurianum, biological regulations can also be involved in such biomass yield decrease (−33% to −38%). Interestingly, the diminution of bacterial biomass production is always concomitant with an increased production of reduced compounds making IET-mediated parasitism and electro-fermentation attractive ways to optimize carbon fluxes in fermentation processes.