Cargando…
Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors
Two dimensional (2D) molecular crystals have attracted considerable attention because of their promising potential in electrical device applications, such as high-performance field-effect transistors (FETs). However, such devices demand high voltages, thereby considerably increasing power consumptio...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552882/ https://www.ncbi.nlm.nih.gov/pubmed/28798302 http://dx.doi.org/10.1038/s41598-017-08280-8 |
Sumario: | Two dimensional (2D) molecular crystals have attracted considerable attention because of their promising potential in electrical device applications, such as high-performance field-effect transistors (FETs). However, such devices demand high voltages, thereby considerably increasing power consumption. This study demonstrates the fabrication of organic FETs based on 2D crystalline films as semiconducting channels. The application of high-κ oxide dielectrics allows the transistors run under a low operating voltage (−4 V). The devices exhibited a high electrical performance with a carrier mobility up to 9.8 cm(2) V(−1) s(−1). Further results show that the AlO(x) layer is beneficial to the charge transport at the conducting channels of FETs. Thus, the device strategy presented in this work is favorable for 2D molecular crystal-based transistors that can operate under low voltages. |
---|