Cargando…
Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies
Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552938/ https://www.ncbi.nlm.nih.gov/pubmed/28811886 http://dx.doi.org/10.1002/ece3.3140 |
_version_ | 1783256551185711104 |
---|---|
author | Matthé, Maximilian Sannolo, Marco Winiarski, Kristopher Spitzen ‐ van der Sluijs, Annemarieke Goedbloed, Daniel Steinfartz, Sebastian Stachow, Ulrich |
author_facet | Matthé, Maximilian Sannolo, Marco Winiarski, Kristopher Spitzen ‐ van der Sluijs, Annemarieke Goedbloed, Daniel Steinfartz, Sebastian Stachow, Ulrich |
author_sort | Matthé, Maximilian |
collection | PubMed |
description | Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state‐of‐the‐art photo‐matching algorithms prior to implementation in capture–recapture studies involving possibly thousands of images. Here, we compared the performance of four photo‐matching algorithms; Wild‐ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel‐based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match “by eye” can be easily translated to accurate individual capture histories necessary for robust demographic estimates. |
format | Online Article Text |
id | pubmed-5552938 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55529382017-08-15 Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies Matthé, Maximilian Sannolo, Marco Winiarski, Kristopher Spitzen ‐ van der Sluijs, Annemarieke Goedbloed, Daniel Steinfartz, Sebastian Stachow, Ulrich Ecol Evol Original Research Photographic capture–recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost‐effectiveness. Recently, several computer‐aided photo‐matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state‐of‐the‐art photo‐matching algorithms prior to implementation in capture–recapture studies involving possibly thousands of images. Here, we compared the performance of four photo‐matching algorithms; Wild‐ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel‐based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match “by eye” can be easily translated to accurate individual capture histories necessary for robust demographic estimates. John Wiley and Sons Inc. 2017-07-10 /pmc/articles/PMC5552938/ /pubmed/28811886 http://dx.doi.org/10.1002/ece3.3140 Text en © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Matthé, Maximilian Sannolo, Marco Winiarski, Kristopher Spitzen ‐ van der Sluijs, Annemarieke Goedbloed, Daniel Steinfartz, Sebastian Stachow, Ulrich Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies |
title | Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies |
title_full | Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies |
title_fullStr | Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies |
title_full_unstemmed | Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies |
title_short | Comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies |
title_sort | comparison of photo‐matching algorithms commonly used for photographic capture–recapture studies |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552938/ https://www.ncbi.nlm.nih.gov/pubmed/28811886 http://dx.doi.org/10.1002/ece3.3140 |
work_keys_str_mv | AT matthemaximilian comparisonofphotomatchingalgorithmscommonlyusedforphotographiccapturerecapturestudies AT sannolomarco comparisonofphotomatchingalgorithmscommonlyusedforphotographiccapturerecapturestudies AT winiarskikristopher comparisonofphotomatchingalgorithmscommonlyusedforphotographiccapturerecapturestudies AT spitzenvandersluijsannemarieke comparisonofphotomatchingalgorithmscommonlyusedforphotographiccapturerecapturestudies AT goedbloeddaniel comparisonofphotomatchingalgorithmscommonlyusedforphotographiccapturerecapturestudies AT steinfartzsebastian comparisonofphotomatchingalgorithmscommonlyusedforphotographiccapturerecapturestudies AT stachowulrich comparisonofphotomatchingalgorithmscommonlyusedforphotographiccapturerecapturestudies |