Cargando…
Going deeper in the automated identification of Herbarium specimens
BACKGROUND: Hundreds of herbarium collections have accumulated a valuable heritage and knowledge of plants over several centuries. Recent initiatives started ambitious preservation plans to digitize this information and make it available to botanists and the general public through web portals. Howev...
Autores principales: | Carranza-Rojas, Jose, Goeau, Herve, Bonnet, Pierre, Mata-Montero, Erick, Joly, Alexis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553807/ https://www.ncbi.nlm.nih.gov/pubmed/28797242 http://dx.doi.org/10.1186/s12862-017-1014-z |
Ejemplares similares
-
A new fine‐grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction
por: Goëau, Hervé, et al.
Publicado: (2020) -
Machine Learning Undercounts Reproductive Organs on Herbarium Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of Streptanthus tortuosus
por: Love, Natalie L. R., et al.
Publicado: (2021) -
Toward a large‐scale and deep phenological stage annotation of herbarium specimens: Case studies from temperate, tropical, and equatorial floras
por: Lorieul, Titouan, et al.
Publicado: (2019) -
Can Artificial Intelligence Help in the Study of Vegetative Growth Patterns from Herbarium Collections? An Evaluation of the Tropical Flora of the French Guiana Forest
por: Goëau, Hervé, et al.
Publicado: (2022) -
Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research
por: Pearson, Katelin D, et al.
Publicado: (2020)