Cargando…

Selection of a cut-off for high- and low-methane producers using a spot-methane breath test: results from a large north American dataset of hydrogen, methane and carbon dioxide measurements in breath

Background: Levels of breath methane, together with breath hydrogen, are determined by means of repeated collections of both, following ingestion of a carbohydrate substrate, at 15–20 minutes intervals, until 10 samples have been obtained. The frequent sampling is required to capture a rise of hydro...

Descripción completa

Detalles Bibliográficos
Autores principales: Gottlieb, Klaus, Le, Chenxiong, Wacher, Vince, Sliman, Joe, Cruz, Christine, Porter, Tyler, Carter, Stephen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554383/
https://www.ncbi.nlm.nih.gov/pubmed/28130375
http://dx.doi.org/10.1093/gastro/gow048
Descripción
Sumario:Background: Levels of breath methane, together with breath hydrogen, are determined by means of repeated collections of both, following ingestion of a carbohydrate substrate, at 15–20 minutes intervals, until 10 samples have been obtained. The frequent sampling is required to capture a rise of hydrogen emissions, which typically occur later in the test: in contrast, methane levels are typically elevated at baseline. If methane emissions represent the principal objective of the test, a spot methane test (i.e. a single-time-point sample taken after an overnight fast without administration of substrate) may be sufficient. Methods: We analysed 10-sample lactulose breath test data from 11 674 consecutive unique subjects who submitted samples to Commonwealth Laboratories (Salem, MA, USA) from sites in all of the states of the USA over a one-year period. The North American Consensus (NAC) guidelines criteria for breath testing served as a reference standard. Results: The overall prevalence of methane-positive subjects (by NAC criteria) was 20.4%, based on corrected methane results, and 18.9% based on raw data. In our USA dataset, the optimal cut-off level to maximize sensitivity and specificity was ≥4 ppm CH(4), 94.5% [confidence interval (CI): 93.5–95.4%] and 95.0% (CI: 94.6–95.5%), respectively. The use of a correction factor (CF) (5% CO(2) as numerator) led to reclassifications CH(4)-high to CH(4)-low in 0.7 % and CH(4)-low to CH(4)-high in 2.1%. Conclusions: A cut-off value for methane at baseline of either ≥4 ppm, as in our USA dataset, or ≥ 5 ppm, as described in a single institution study, are both highly accurate in identifying subjects at baseline that would be diagnosed as ‘methane-positive’ in a 10-sample lactulose breath test for small intestinal bacterial overgrowth.