Cargando…
The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea
Background: The cochlea produces an electric field potential essential for hair cell transduction and hearing. This biological “battery” is situated in the lateral wall of the cochlea and contains molecular machinery that secretes and recycles K(+) ions. Its functioning depends on junctional protein...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554435/ https://www.ncbi.nlm.nih.gov/pubmed/28848383 http://dx.doi.org/10.3389/fnmol.2017.00239 |
_version_ | 1783256792852070400 |
---|---|
author | Liu, Wei Schrott-Fischer, Annelies Glueckert, Rudolf Benav, Heval Rask-Andersen, Helge |
author_facet | Liu, Wei Schrott-Fischer, Annelies Glueckert, Rudolf Benav, Heval Rask-Andersen, Helge |
author_sort | Liu, Wei |
collection | PubMed |
description | Background: The cochlea produces an electric field potential essential for hair cell transduction and hearing. This biological “battery” is situated in the lateral wall of the cochlea and contains molecular machinery that secretes and recycles K(+) ions. Its functioning depends on junctional proteins that restrict the para-cellular escape of ions. The tight junction protein Claudin-11 has been found to be one of the major constituents of this barrier that maintains ion gradients (Gow et al., 2004; Kitajiri et al., 2004a). We are the first to elucidate the human Claudin-11 framework and the associated ion transport machinery using super-resolution fluorescence illumination microscopy (SR-SIM). Methods: Archival cochleae obtained during meningioma surgery were used for SR-SIM together with transmission electron microscopy after ethical consent. Results: Claudin-11-expressing cells formed parallel tight junction lamellae that insulated the epithelial syncytium of the stria vascularis and extended to the suprastrial region. Intercellular gap junctions were found between the barrier cells and fibrocytes. Conclusion: Transmission electron microscopy, confocal microscopy and SR-SIM revealed exclusive cell specialization in the various subdomains of the lateral wall of the human cochlea. The Claudin-11-expressing cells exhibited both conductor and isolator characteristics, and these micro-porous separators may selectively mediate the movement of charged units to the intrastrial space in a manner that is analogous to a conventional electrochemical “battery.” The function and relevance of this battery for the development of inner ear disease are discussed. |
format | Online Article Text |
id | pubmed-5554435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-55544352017-08-28 The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea Liu, Wei Schrott-Fischer, Annelies Glueckert, Rudolf Benav, Heval Rask-Andersen, Helge Front Mol Neurosci Neuroscience Background: The cochlea produces an electric field potential essential for hair cell transduction and hearing. This biological “battery” is situated in the lateral wall of the cochlea and contains molecular machinery that secretes and recycles K(+) ions. Its functioning depends on junctional proteins that restrict the para-cellular escape of ions. The tight junction protein Claudin-11 has been found to be one of the major constituents of this barrier that maintains ion gradients (Gow et al., 2004; Kitajiri et al., 2004a). We are the first to elucidate the human Claudin-11 framework and the associated ion transport machinery using super-resolution fluorescence illumination microscopy (SR-SIM). Methods: Archival cochleae obtained during meningioma surgery were used for SR-SIM together with transmission electron microscopy after ethical consent. Results: Claudin-11-expressing cells formed parallel tight junction lamellae that insulated the epithelial syncytium of the stria vascularis and extended to the suprastrial region. Intercellular gap junctions were found between the barrier cells and fibrocytes. Conclusion: Transmission electron microscopy, confocal microscopy and SR-SIM revealed exclusive cell specialization in the various subdomains of the lateral wall of the human cochlea. The Claudin-11-expressing cells exhibited both conductor and isolator characteristics, and these micro-porous separators may selectively mediate the movement of charged units to the intrastrial space in a manner that is analogous to a conventional electrochemical “battery.” The function and relevance of this battery for the development of inner ear disease are discussed. Frontiers Media S.A. 2017-08-10 /pmc/articles/PMC5554435/ /pubmed/28848383 http://dx.doi.org/10.3389/fnmol.2017.00239 Text en Copyright © 2017 Liu, Schrott-Fischer, Glueckert, Benav and Rask-Andersen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Liu, Wei Schrott-Fischer, Annelies Glueckert, Rudolf Benav, Heval Rask-Andersen, Helge The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea |
title | The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea |
title_full | The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea |
title_fullStr | The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea |
title_full_unstemmed | The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea |
title_short | The Human “Cochlear Battery” – Claudin-11 Barrier and Ion Transport Proteins in the Lateral Wall of the Cochlea |
title_sort | human “cochlear battery” – claudin-11 barrier and ion transport proteins in the lateral wall of the cochlea |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554435/ https://www.ncbi.nlm.nih.gov/pubmed/28848383 http://dx.doi.org/10.3389/fnmol.2017.00239 |
work_keys_str_mv | AT liuwei thehumancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT schrottfischerannelies thehumancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT glueckertrudolf thehumancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT benavheval thehumancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT raskandersenhelge thehumancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT liuwei humancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT schrottfischerannelies humancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT glueckertrudolf humancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT benavheval humancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea AT raskandersenhelge humancochlearbatteryclaudin11barrierandiontransportproteinsinthelateralwallofthecochlea |