Cargando…
Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction
Bayesian variable selection becomes more and more important in statistical analyses, in particular when performing variable selection in high dimensions. For survival time models and in the presence of genomic data, the state of the art is still quite unexploited. One of the more recent approaches s...
Autores principales: | Treppmann, Tabea, Ickstadt, Katja, Zucknick, Manuela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554576/ https://www.ncbi.nlm.nih.gov/pubmed/28828032 http://dx.doi.org/10.1155/2017/7340565 |
Ejemplares similares
-
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2021) -
Correction to: Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2022) -
Bayesian variable selection with graphical structure learning: Applications in integrative genomics
por: Kundu, Suprateek, et al.
Publicado: (2018) -
A Bayesian Integrative Model for Genetical Genomics with Spatially Informed Variable Selection
por: Cassese, Alberto, et al.
Publicado: (2014) -
Bayesian Variable Selection in Searching for Additive and Dominant Effects in Genome-Wide Data
por: Peltola, Tomi, et al.
Publicado: (2012)