Cargando…

A human plasma derived supplement preserves function of human vascular cells in absence of fetal bovine serum

Current techniques for cell culture routinely use animal-derived components. Fetal bovine serum (FBS) is the most widely applied supplement, but it often displays significant batch-to-batch variations and is generally not suitable for clinical applications in humans. A robust and xeno-free alternati...

Descripción completa

Detalles Bibliográficos
Autores principales: Castells-Sala, C., Martorell, J., Balcells, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554976/
https://www.ncbi.nlm.nih.gov/pubmed/28811873
http://dx.doi.org/10.1186/s13578-017-0164-4
Descripción
Sumario:Current techniques for cell culture routinely use animal-derived components. Fetal bovine serum (FBS) is the most widely applied supplement, but it often displays significant batch-to-batch variations and is generally not suitable for clinical applications in humans. A robust and xeno-free alternative to FBS is of high interest for cellular therapies, from early in vitro testing to clinical trials in human subjects. In the current work, a highly consistent human plasma derived supplement (SCC) has been tested, as a potential substitute of FBS in primary human vascular cells culture. Our results show that SCC is able to support proliferation, preserve cellular morphology and potentiate functionality analogously to FBS. We conclude that SCC is a viable substitute of FBS for culture and expansion of cells in advanced therapies using human vascular cells and fibroblasts.