Cargando…
Probing for Sparse and Fast Variable Selection with Model-Based Boosting
We present a new variable selection method based on model-based gradient boosting and randomly permuted variables. Model-based boosting is a tool to fit a statistical model while performing variable selection at the same time. A drawback of the fitting lies in the need of multiple model fits on slig...
Autores principales: | Thomas, Janek, Hepp, Tobias, Mayr, Andreas, Bischl, Bernd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555005/ https://www.ncbi.nlm.nih.gov/pubmed/28831289 http://dx.doi.org/10.1155/2017/1421409 |
Ejemplares similares
-
Corrigendum to “Probing for Sparse and Fast Variable Selection with Model-Based Boosting”
por: Thomas, Janek, et al.
Publicado: (2018) -
Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection
por: Mayr, Andreas, et al.
Publicado: (2016) -
Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction
por: Staerk, Christian, et al.
Publicado: (2021) -
Structured Verification of Machine Learning Models in Industrial Settings
por: Kaminwar, Sai Rahul, et al.
Publicado: (2023) -
An Update on Statistical Boosting in Biomedicine
por: Mayr, Andreas, et al.
Publicado: (2017)