Cargando…
A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules
Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555447/ https://www.ncbi.nlm.nih.gov/pubmed/28687337 http://dx.doi.org/10.1016/j.ymben.2017.06.012 |
_version_ | 1783256913743446016 |
---|---|
author | Reed, James Stephenson, Michael J. Miettinen, Karel Brouwer, Bastiaan Leveau, Aymeric Brett, Paul Goss, Rebecca J.M. Goossens, Alain O’Connell, Maria A. Osbourn, Anne |
author_facet | Reed, James Stephenson, Michael J. Miettinen, Karel Brouwer, Bastiaan Leveau, Aymeric Brett, Paul Goss, Rebecca J.M. Goossens, Alain O’Connell, Maria A. Osbourn, Anne |
author_sort | Reed, James |
collection | PubMed |
description | Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines. |
format | Online Article Text |
id | pubmed-5555447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-55554472017-08-22 A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules Reed, James Stephenson, Michael J. Miettinen, Karel Brouwer, Bastiaan Leveau, Aymeric Brett, Paul Goss, Rebecca J.M. Goossens, Alain O’Connell, Maria A. Osbourn, Anne Metab Eng Article Plants are an excellent source of drug leads. However availability is limited by access to source species, low abundance and recalcitrance to chemical synthesis. Although plant genomics is yielding a wealth of genes for natural product biosynthesis, the translation of this genetic information into small molecules for evaluation as drug leads represents a major bottleneck. For example, the yeast platform for artemisinic acid production is estimated to have taken >150 person years to develop. Here we demonstrate the power of plant transient transfection technology for rapid, scalable biosynthesis and isolation of triterpenes, one of the largest and most structurally diverse families of plant natural products. Using pathway engineering and improved agro-infiltration methodology we are able to generate gram-scale quantities of purified triterpene in just a few weeks. In contrast to heterologous expression in microbes, this system does not depend on re-engineering of the host. We next exploit agro-infection for quick and easy combinatorial biosynthesis without the need for generation of multi-gene constructs, so affording an easy entrée to suites of molecules, some new-to-nature, that are recalcitrant to chemical synthesis. We use this platform to purify a suite of bespoke triterpene analogs and demonstrate differences in anti-proliferative and anti-inflammatory activity in bioassays, providing proof of concept of this system for accessing and evaluating medicinally important bioactives. Together with new genome mining algorithms for plant pathway discovery and advances in plant synthetic biology, this advance provides new routes to synthesize and access previously inaccessible natural products and analogs and has the potential to reinvigorate drug discovery pipelines. Academic Press 2017-07 /pmc/articles/PMC5555447/ /pubmed/28687337 http://dx.doi.org/10.1016/j.ymben.2017.06.012 Text en © 2017 The Authors. International Metabolic Engineering Society. Published by Elsevier Inc. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Reed, James Stephenson, Michael J. Miettinen, Karel Brouwer, Bastiaan Leveau, Aymeric Brett, Paul Goss, Rebecca J.M. Goossens, Alain O’Connell, Maria A. Osbourn, Anne A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules |
title | A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules |
title_full | A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules |
title_fullStr | A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules |
title_full_unstemmed | A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules |
title_short | A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules |
title_sort | translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555447/ https://www.ncbi.nlm.nih.gov/pubmed/28687337 http://dx.doi.org/10.1016/j.ymben.2017.06.012 |
work_keys_str_mv | AT reedjames atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT stephensonmichaelj atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT miettinenkarel atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT brouwerbastiaan atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT leveauaymeric atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT brettpaul atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT gossrebeccajm atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT goossensalain atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT oconnellmariaa atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT osbournanne atranslationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT reedjames translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT stephensonmichaelj translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT miettinenkarel translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT brouwerbastiaan translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT leveauaymeric translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT brettpaul translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT gossrebeccajm translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT goossensalain translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT oconnellmariaa translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules AT osbournanne translationalsyntheticbiologyplatformforrapidaccesstogramscalequantitiesofnoveldruglikemolecules |