Cargando…
Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset
Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and...
Autores principales: | Jeyasingh, Suganthi, Veluchamy, Malathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555532/ https://www.ncbi.nlm.nih.gov/pubmed/28610411 http://dx.doi.org/10.22034/APJCP.2017.18.5.1257 |
Ejemplares similares
-
Evaluation of Modified Categorical Data Fuzzy Clustering Algorithm on the Wisconsin Breast Cancer Dataset
por: Ahmad, Amir
Publicado: (2016) -
Intelligent Fuzzy System to Predict the Wisconsin Breast Cancer Dataset
por: Hernández-Julio, Yamid Fabián, et al.
Publicado: (2023) -
Diagnosis of Breast Cancer Pathology on the Wisconsin Dataset with the Help of Data Mining Classification and Clustering Techniques
por: Mohammad, Walid Theib, et al.
Publicado: (2022) -
Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
por: Aalaei, Shokoufeh, et al.
Publicado: (2016) -
Naive Bayes-Guided Bat Algorithm for Feature Selection
por: Taha, Ahmed Majid, et al.
Publicado: (2013)