Cargando…

Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells

BACKGROUND: A full-term pregnancy has been associated with reduced risk for developing breast cancer. In rodent models, the protective effect of pregnancy can be mimicked with a defined regimen of estrogen and progesterone combination (E/P). However, the effects of pregnancy levels of E/P in humans...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jiahui, Tu, Yifan, Smith-Schneider, Sallie
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC555559/
https://www.ncbi.nlm.nih.gov/pubmed/15755327
http://dx.doi.org/10.1186/1475-2867-5-6
_version_ 1782122537733324800
author Zhang, Jiahui
Tu, Yifan
Smith-Schneider, Sallie
author_facet Zhang, Jiahui
Tu, Yifan
Smith-Schneider, Sallie
author_sort Zhang, Jiahui
collection PubMed
description BACKGROUND: A full-term pregnancy has been associated with reduced risk for developing breast cancer. In rodent models, the protective effect of pregnancy can be mimicked with a defined regimen of estrogen and progesterone combination (E/P). However, the effects of pregnancy levels of E/P in humans and their underlying mechanisms are not fully understood. In this report, we investigated the growth inhibitory effects of pregnancy levels of E/P and both natural and synthetic retinoids in an immortalized human mammary epithelial cell line, 76N TERT cell line. RESULTS: We observed that cell growth was modestly inhibited by E/P, 9-cis-retinoic acid (9-cis RA) or all-trans-retinoic acid (ATRA), and strongly inhibited by N-(4-hydroxyphenyl) retinamide (HPR). The growth inhibitory effects of retinoids were further increased in the presence of E/P, suggesting their effects are additive. In addition, our results showed that both E/P and retinoid treatments resulted in increased RARE and p53 gene activity. We further demonstrated that p53 and p21 protein expression were induced following the E/P and retinoid treatments. Furthermore, we demonstrated that while the telomerase activity was moderately inhibited by E/P, 9-cis RA and ATRA, it was almost completely abolished by HPR treatment. These inhibitions on telomerase activity by retinoids were potentiated by co-treatment with E/P, and correlated well with their observed growth inhibitory effects. Finally, this study provides the first evidence that estrogen receptor beta is up-regulated in response to E/P and retinoid treatments. CONCLUSION: Taken together, our studies show that part of the anti-growth effects of E/P and retinoids is p53 dependent, and involve activation of p53 and subsequent induction of p21 expression. Inhibition of telomerase activity and up-regulation of estrogen receptor beta are also associated with the E/P- and retinoid-mediated growth inhibition. Our studies also demonstrate that the potency of retinoids on cell growth inhibition may be increased through combination of estrogen and progesterone treatment.
format Text
id pubmed-555559
institution National Center for Biotechnology Information
language English
publishDate 2005
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-5555592005-03-25 Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells Zhang, Jiahui Tu, Yifan Smith-Schneider, Sallie Cancer Cell Int Primary Research BACKGROUND: A full-term pregnancy has been associated with reduced risk for developing breast cancer. In rodent models, the protective effect of pregnancy can be mimicked with a defined regimen of estrogen and progesterone combination (E/P). However, the effects of pregnancy levels of E/P in humans and their underlying mechanisms are not fully understood. In this report, we investigated the growth inhibitory effects of pregnancy levels of E/P and both natural and synthetic retinoids in an immortalized human mammary epithelial cell line, 76N TERT cell line. RESULTS: We observed that cell growth was modestly inhibited by E/P, 9-cis-retinoic acid (9-cis RA) or all-trans-retinoic acid (ATRA), and strongly inhibited by N-(4-hydroxyphenyl) retinamide (HPR). The growth inhibitory effects of retinoids were further increased in the presence of E/P, suggesting their effects are additive. In addition, our results showed that both E/P and retinoid treatments resulted in increased RARE and p53 gene activity. We further demonstrated that p53 and p21 protein expression were induced following the E/P and retinoid treatments. Furthermore, we demonstrated that while the telomerase activity was moderately inhibited by E/P, 9-cis RA and ATRA, it was almost completely abolished by HPR treatment. These inhibitions on telomerase activity by retinoids were potentiated by co-treatment with E/P, and correlated well with their observed growth inhibitory effects. Finally, this study provides the first evidence that estrogen receptor beta is up-regulated in response to E/P and retinoid treatments. CONCLUSION: Taken together, our studies show that part of the anti-growth effects of E/P and retinoids is p53 dependent, and involve activation of p53 and subsequent induction of p21 expression. Inhibition of telomerase activity and up-regulation of estrogen receptor beta are also associated with the E/P- and retinoid-mediated growth inhibition. Our studies also demonstrate that the potency of retinoids on cell growth inhibition may be increased through combination of estrogen and progesterone treatment. BioMed Central 2005-03-08 /pmc/articles/PMC555559/ /pubmed/15755327 http://dx.doi.org/10.1186/1475-2867-5-6 Text en Copyright © 2005 Zhang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Primary Research
Zhang, Jiahui
Tu, Yifan
Smith-Schneider, Sallie
Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
title Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
title_full Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
title_fullStr Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
title_full_unstemmed Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
title_short Activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
title_sort activation of p53, inhibition of telomerase activity and induction of estrogen receptor beta are associated with the anti-growth effects of combination of ovarian hormones and retinoids in immortalized human mammary epithelial cells
topic Primary Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC555559/
https://www.ncbi.nlm.nih.gov/pubmed/15755327
http://dx.doi.org/10.1186/1475-2867-5-6
work_keys_str_mv AT zhangjiahui activationofp53inhibitionoftelomeraseactivityandinductionofestrogenreceptorbetaareassociatedwiththeantigrowtheffectsofcombinationofovarianhormonesandretinoidsinimmortalizedhumanmammaryepithelialcells
AT tuyifan activationofp53inhibitionoftelomeraseactivityandinductionofestrogenreceptorbetaareassociatedwiththeantigrowtheffectsofcombinationofovarianhormonesandretinoidsinimmortalizedhumanmammaryepithelialcells
AT smithschneidersallie activationofp53inhibitionoftelomeraseactivityandinductionofestrogenreceptorbetaareassociatedwiththeantigrowtheffectsofcombinationofovarianhormonesandretinoidsinimmortalizedhumanmammaryepithelialcells