Cargando…

A comparative study of reaction times between type II diabetics and non-diabetics

BACKGROUND: Aging has been shown to slow reflexes and increase reaction time to varied stimuli. However, the effect of Type II diabetes on these same reaction times has not been reported. Diabetes affects peripheral nerves in the somatosensory and auditory system, slows psychomotor responses, and ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Richerson, Samantha J, Robinson, Charles J, Shum, Judy
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC555589/
https://www.ncbi.nlm.nih.gov/pubmed/15723700
http://dx.doi.org/10.1186/1475-925X-4-12
Descripción
Sumario:BACKGROUND: Aging has been shown to slow reflexes and increase reaction time to varied stimuli. However, the effect of Type II diabetes on these same reaction times has not been reported. Diabetes affects peripheral nerves in the somatosensory and auditory system, slows psychomotor responses, and has cognitive effects on those individuals without proper metabolic control, all of which may affect reaction times. The additional slowing of reaction times may affect every-day tasks such as balance, increasing the probability of a slip or fall. METHODS: Reaction times to a plantar touch, a pure tone auditory stimulus, and rightward whole-body lateral movement of 4 mm at 100 mm/s(2 )on a platform upon which a subject stood, were measured in 37 adults over 50 yrs old. Thirteen (mean age = 60.6 ± 6.5 years) had a clinical diagnosis of type II diabetes and 24 (mean age = 59.4 ± 8.0 years) did not. Group averages were compared to averages obtained from nine healthy younger adult group (mean age = 22.7 ± 1.2 years). RESULTS: Average reaction times for plantar touch were significantly longer in diabetic adults than the other two groups, while auditory reaction times were not significantly different among groups. Whole body reaction times were significantly different among all three groups with diabetic adults having the longest reaction times, followed by age-matched adults, and then younger adults. CONCLUSION: Whole body reaction time has been shown to be a sensitive indicator of differences between young adults, healthy mature adults, and mature diabetic adults. Additionally, the increased reaction time seen in this modality for subjects with diabetes may be one cause of increased slips and falls in this group.