Cargando…
Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set
The increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemogenomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different methods have been reported and evaluated, such as target fishing, nearest...
Autores principales: | Lenselink, Eelke B., ten Dijke, Niels, Bongers, Brandon, Papadatos, George, van Vlijmen, Herman W. T., Kowalczyk, Wojtek, IJzerman, Adriaan P., van Westen, Gerard J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555960/ https://www.ncbi.nlm.nih.gov/pubmed/29086168 http://dx.doi.org/10.1186/s13321-017-0232-0 |
Ejemplares similares
-
The ChEMBL database in 2017
por: Gaulton, Anna, et al.
Publicado: (2017) -
The ChEMBL bioactivity database: an update
por: Bento, A. Patrícia, et al.
Publicado: (2014) -
A document classifier for medicinal chemistry publications trained on the ChEMBL corpus
por: Papadatos, George, et al.
Publicado: (2014) -
ChEMBL-Likeness Score and Database GDBChEMBL
por: Bühlmann, Sven, et al.
Publicado: (2020) -
Activity, assay and target data curation and quality in the ChEMBL database
por: Papadatos, George, et al.
Publicado: (2015)