Cargando…

Anticancer Effects of Baicalein in Pancreatic Neuroendocrine Tumors In Vitro and In Vivo

OBJECTIVES: Baicalein is a Chinese traditional medicine that inhibits tumor migration and growth. Pancreatic neuroendocrine tumors (pNETs) have a high incidence in China, but there are still no effective treatments. The aim of our study was to investigate whether baicalein could inhibit pNETs. METHO...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Ye, Zhen, Liang, Bai, Jian’an, Mei, Yumei, Li, Zheng, Lin, Aihua, Li, Xueliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555971/
https://www.ncbi.nlm.nih.gov/pubmed/28787336
http://dx.doi.org/10.1097/MPA.0000000000000895
Descripción
Sumario:OBJECTIVES: Baicalein is a Chinese traditional medicine that inhibits tumor migration and growth. Pancreatic neuroendocrine tumors (pNETs) have a high incidence in China, but there are still no effective treatments. The aim of our study was to investigate whether baicalein could inhibit pNETs. METHODS: In vitro, we used BON1—a cell line of pNETs—to analyze the apoptosis and migration and invasion after baicalein treatment via flow cytometry and Western blot. In vivo, we used a xenograft tumors model to evaluate the size of tumors after baicalein treatment. Western blot was used to analyze the expression of apoptosis and migration-related protein. RESULTS: In vitro, the Cell Counting Kit 8 assay showed that baicalein decreased BON1 viability, and flow cytometry demonstrated that baicalein induced BON1 apoptosis and protein changes. In addition, baicalein inhibited BON1 migration and invasion as shown via a Transwell assay. In vivo, baicalein inhibited tumor growth and migration and also increased apoptosis-related protein expression. CONCLUSIONS: Baicalein could increase caspase-3 and Bax expression and decrease survivin and Bcl-2 to induce apoptosis. It inhibits migration and invasion by decreasing expression of vascular endothelial growth factor and matrix metalloproteinases 2 and 9.