Cargando…
Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task
PURPOSE: The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional sin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556133/ https://www.ncbi.nlm.nih.gov/pubmed/28674921 http://dx.doi.org/10.1007/s00421-017-3675-0 |
_version_ | 1783257012875821056 |
---|---|
author | Laubacher, Marco Aksöz, Anil Efe Riener, Robert Binder-Macleod, Stuart Hunt, Kenneth J. |
author_facet | Laubacher, Marco Aksöz, Anil Efe Riener, Robert Binder-Macleod, Stuart Hunt, Kenneth J. |
author_sort | Laubacher, Marco |
collection | PubMed |
description | PURPOSE: The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS: M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P (mean)) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS: P (mean) was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p = 0.037). With SDSS, the reduction in P (mean) was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION: Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications. |
format | Online Article Text |
id | pubmed-5556133 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-55561332017-08-28 Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task Laubacher, Marco Aksöz, Anil Efe Riener, Robert Binder-Macleod, Stuart Hunt, Kenneth J. Eur J Appl Physiol Original Article PURPOSE: The low power output and fatigue resistance during functional electrical stimulation (FES) limits its use for functional applications. The aim of this study was to compare the power output and fatigue properties of spatially distributed sequential stimulation (SDSS) against conventional single electrode stimulation (SES) in an isokinetic knee extension task simulating knee movement during recumbent cycling. METHODS: M. vastus lateralis and m. vastus medialis of eight able-bodied subjects were stimulated for 6 min on both legs with both setups. In the SES setup, target muscles were each stimulated by a pair of electrodes. In SDSS, four small electrodes replaced the SES active electrodes, but reference electrodes were the same. Torque was measured during knee extension movement by a dynamometer at an angular velocity of 110°/s. Mean power (P (mean)) was calculated from stimulated extensions for the first 10 extensions, the final 20 extensions and overall. Fatigue is presented as an index, calculated as the decrease with respect to initial power. RESULTS: P (mean) was significantly higher for SDSS than for SES in the final phase (9.9 ± 4.0 vs. 7.4 ± 4.3 W, p = 0.035) and overall (11.5 ± 4.0 vs. 9.2 ± 4.5 W, p = 0.037). With SDSS, the reduction in P (mean) was significantly smaller compared to SES (from 14.9 to 9.9 vs. 14.6 to 7.4 W, p = 0.024). The absolute mean pulse width was substantially lower with SDSS (62.5 vs. 90.0 µs). CONCLUSION: Although less stimulation was applied, SDSS showed a significantly higher mean power output than SES. SDSS also had improved fatigue resistance when compared to conventional stimulation. The SDSS approach may provide substantial performance benefits for cyclical FES applications. Springer Berlin Heidelberg 2017-07-03 2017 /pmc/articles/PMC5556133/ /pubmed/28674921 http://dx.doi.org/10.1007/s00421-017-3675-0 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Laubacher, Marco Aksöz, Anil Efe Riener, Robert Binder-Macleod, Stuart Hunt, Kenneth J. Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task |
title | Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task |
title_full | Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task |
title_fullStr | Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task |
title_full_unstemmed | Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task |
title_short | Power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task |
title_sort | power output and fatigue properties using spatially distributed sequential stimulation in a dynamic knee extension task |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556133/ https://www.ncbi.nlm.nih.gov/pubmed/28674921 http://dx.doi.org/10.1007/s00421-017-3675-0 |
work_keys_str_mv | AT laubachermarco poweroutputandfatiguepropertiesusingspatiallydistributedsequentialstimulationinadynamickneeextensiontask AT aksozanilefe poweroutputandfatiguepropertiesusingspatiallydistributedsequentialstimulationinadynamickneeextensiontask AT rienerrobert poweroutputandfatiguepropertiesusingspatiallydistributedsequentialstimulationinadynamickneeextensiontask AT bindermacleodstuart poweroutputandfatiguepropertiesusingspatiallydistributedsequentialstimulationinadynamickneeextensiontask AT huntkennethj poweroutputandfatiguepropertiesusingspatiallydistributedsequentialstimulationinadynamickneeextensiontask |