Cargando…
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for a...
Autores principales: | An, Na, Yu, Xijun, Chen, Huanzhen, Huang, Chaobao, Liu, Zhongyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556176/ https://www.ncbi.nlm.nih.gov/pubmed/28855785 http://dx.doi.org/10.1186/s13660-017-1461-5 |
Ejemplares similares
-
Hybrid finite difference/finite element immersed boundary method
por: E. Griffith, Boyce, et al.
Publicado: (2017) -
Analysis of the Element-Free Galerkin Method with Penalty for Stokes Problems
por: Zhang, Tao, et al.
Publicado: (2022) -
An unstructured immersed finite element method for nonlinear solid mechanics
por: Rüberg, Thomas, et al.
Publicado: (2016) -
The fitted finite volume and power penalty methods for option pricing
por: Wang, Song
Publicado: (2020) -
Finite element methods for eigenvalue problems
por: Sun, Jiguang, et al.
Publicado: (2016)