Cargando…

Using Digital Technologies in Clinical HIV Research: Real-World Applications and Considerations for Future Work

BACKGROUND: Digital technologies, especially if used in novel ways, provide a number of potential advantages to clinical research in trials related to human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) and may greatly facilitate operations as well as data collection an...

Descripción completa

Detalles Bibliográficos
Autores principales: Andriesen, Jessica, Bull, Sheana, Dietrich, Janan, Haberer, Jessica E, Van Der Pol, Barbara, Voronin, Yegor, Wall, Kristin M, Whalen, Christopher, Priddy, Frances
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556256/
https://www.ncbi.nlm.nih.gov/pubmed/28760729
http://dx.doi.org/10.2196/jmir.7513
Descripción
Sumario:BACKGROUND: Digital technologies, especially if used in novel ways, provide a number of potential advantages to clinical research in trials related to human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS) and may greatly facilitate operations as well as data collection and analysis. These technologies may even allow answering questions that are not answerable with older technologies. However, they come with a variety of potential concerns for both the participants and the trial sponsors. The exact challenges and means for alleviation depend on the technology and on the population in which it is deployed, and the rapidly changing landscape of digital technologies presents a challenge for creating future-proof guidelines for technology application. OBJECTIVE: The aim of this study was to identify and summarize some common themes that are frequently encountered by researchers in this context and highlight those that should be carefully considered before making a decision to include these technologies in their research. METHODS: In April 2016, the Global HIV Vaccine Enterprise surveyed the field for research groups with recent experience in novel applications of digital technologies in HIV clinical research and convened these groups for a 1-day meeting. Real-world uses of various technologies were presented and discussed by 46 attendees, most of whom were researchers involved in the design and conduct of clinical trials of biomedical HIV prevention and treatment approaches. After the meeting, a small group of organizers reviewed the presentations and feedback obtained during the meeting and categorized various lessons-learned to identify common themes. A group of 9 experts developed a draft summary of the findings that was circulated via email to all 46 attendees for review. Taking into account the feedback received, the group finalized the considerations that are presented here. RESULTS: Meeting presenters and attendees discussed the many successful applications of digital technologies to improve research outcomes, such as those for recruitment and enrollment, participant identification, informed consent, data collection, data quality, and protocol or treatment adherence. These discussions also revealed unintended consequence of technology usage, including risks to study participants and risks to study integrity. CONCLUSIONS: Key lessons learned from these discussions included the need to thoroughly evaluate systems to be used, the idea that early success may not be sustained throughout the study, that some failures will occur, and considerations for study-provided devices. Additionally, taking these key lessons into account, the group generated recommendations on how to move forward with the use of technology in HIV vaccine and biomedical prevention trials.