Cargando…

Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds

[Image: see text] The energy landscape of a supramolecular material can include different molecular packing configurations that differ in stability and function. We report here on a thermally driven crystalline order transition in the landscape of supramolecular nanostructures formed by charged chro...

Descripción completa

Detalles Bibliográficos
Autores principales: Kazantsev, Roman V., Dannenhoffer, Adam J., Weingarten, Adam S., Phelan, Brian T., Harutyunyan, Boris, Aytun, Taner, Narayanan, Ashwin, Fairfield, Daniel J., Boekhoven, Job, Sai, Hiroaki, Senesi, Andrew, O’Dogherty, Pascual I., Palmer, Liam C., Bedzyk, Michael J., Wasielewski, Michael R., Stupp, Samuel I.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556754/
https://www.ncbi.nlm.nih.gov/pubmed/28436654
http://dx.doi.org/10.1021/jacs.6b13156
_version_ 1783257125833670656
author Kazantsev, Roman V.
Dannenhoffer, Adam J.
Weingarten, Adam S.
Phelan, Brian T.
Harutyunyan, Boris
Aytun, Taner
Narayanan, Ashwin
Fairfield, Daniel J.
Boekhoven, Job
Sai, Hiroaki
Senesi, Andrew
O’Dogherty, Pascual I.
Palmer, Liam C.
Bedzyk, Michael J.
Wasielewski, Michael R.
Stupp, Samuel I.
author_facet Kazantsev, Roman V.
Dannenhoffer, Adam J.
Weingarten, Adam S.
Phelan, Brian T.
Harutyunyan, Boris
Aytun, Taner
Narayanan, Ashwin
Fairfield, Daniel J.
Boekhoven, Job
Sai, Hiroaki
Senesi, Andrew
O’Dogherty, Pascual I.
Palmer, Liam C.
Bedzyk, Michael J.
Wasielewski, Michael R.
Stupp, Samuel I.
author_sort Kazantsev, Roman V.
collection PubMed
description [Image: see text] The energy landscape of a supramolecular material can include different molecular packing configurations that differ in stability and function. We report here on a thermally driven crystalline order transition in the landscape of supramolecular nanostructures formed by charged chromophore amphiphiles in salt-containing aqueous solutions. An irreversible transition was observed from a metastable to a stable crystal phase within the nanostructures. In the stable crystalline phase, the molecules end up organized in a short scroll morphology at high ionic strengths and as long helical ribbons at lower salt content. This is interpreted as the result of the competition between electrostatic repulsive forces and attractive molecular interactions. Only the stable phase forms charge-transfer excitons upon exposure to visible light as indicated by absorbance and fluorescence features, second-order harmonic generation microscopy, and femtosecond transient absorbance spectroscopy. Interestingly, the supramolecular reconfiguration to the stable crystalline phase nanostructures enhances photosensitization of a proton reduction catalyst for hydrogen production.
format Online
Article
Text
id pubmed-5556754
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-55567542018-04-24 Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds Kazantsev, Roman V. Dannenhoffer, Adam J. Weingarten, Adam S. Phelan, Brian T. Harutyunyan, Boris Aytun, Taner Narayanan, Ashwin Fairfield, Daniel J. Boekhoven, Job Sai, Hiroaki Senesi, Andrew O’Dogherty, Pascual I. Palmer, Liam C. Bedzyk, Michael J. Wasielewski, Michael R. Stupp, Samuel I. J Am Chem Soc [Image: see text] The energy landscape of a supramolecular material can include different molecular packing configurations that differ in stability and function. We report here on a thermally driven crystalline order transition in the landscape of supramolecular nanostructures formed by charged chromophore amphiphiles in salt-containing aqueous solutions. An irreversible transition was observed from a metastable to a stable crystal phase within the nanostructures. In the stable crystalline phase, the molecules end up organized in a short scroll morphology at high ionic strengths and as long helical ribbons at lower salt content. This is interpreted as the result of the competition between electrostatic repulsive forces and attractive molecular interactions. Only the stable phase forms charge-transfer excitons upon exposure to visible light as indicated by absorbance and fluorescence features, second-order harmonic generation microscopy, and femtosecond transient absorbance spectroscopy. Interestingly, the supramolecular reconfiguration to the stable crystalline phase nanostructures enhances photosensitization of a proton reduction catalyst for hydrogen production. American Chemical Society 2017-04-24 2017-05-03 /pmc/articles/PMC5556754/ /pubmed/28436654 http://dx.doi.org/10.1021/jacs.6b13156 Text en Copyright © 2017 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Kazantsev, Roman V.
Dannenhoffer, Adam J.
Weingarten, Adam S.
Phelan, Brian T.
Harutyunyan, Boris
Aytun, Taner
Narayanan, Ashwin
Fairfield, Daniel J.
Boekhoven, Job
Sai, Hiroaki
Senesi, Andrew
O’Dogherty, Pascual I.
Palmer, Liam C.
Bedzyk, Michael J.
Wasielewski, Michael R.
Stupp, Samuel I.
Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds
title Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds
title_full Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds
title_fullStr Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds
title_full_unstemmed Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds
title_short Crystal-Phase Transitions and Photocatalysis in Supramolecular Scaffolds
title_sort crystal-phase transitions and photocatalysis in supramolecular scaffolds
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556754/
https://www.ncbi.nlm.nih.gov/pubmed/28436654
http://dx.doi.org/10.1021/jacs.6b13156
work_keys_str_mv AT kazantsevromanv crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT dannenhofferadamj crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT weingartenadams crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT phelanbriant crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT harutyunyanboris crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT aytuntaner crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT narayananashwin crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT fairfielddanielj crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT boekhovenjob crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT saihiroaki crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT senesiandrew crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT odoghertypascuali crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT palmerliamc crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT bedzykmichaelj crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT wasielewskimichaelr crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds
AT stuppsamueli crystalphasetransitionsandphotocatalysisinsupramolecularscaffolds