Cargando…

Natural reversal of pulmonary vascular remodeling and right ventricular remodeling in SU5416/hypoxia-treated Sprague-Dawley rats

AIMS: Pulmonary arterial hypertension (PAH) is a lethal disease and improved therapeutic strategies are needed. Increased pulmonary arterial pressure, due to vasoconstriction and vascular remodeling, causes right ventricle (RV) failure and death in patients. The treatment of Sprague-Dawley rats with...

Descripción completa

Detalles Bibliográficos
Autores principales: Zungu-Edmondson, Makhosazane, Shults, Nataliia V., Melnyk, Oleksiy, Suzuki, Yuichiro J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557492/
https://www.ncbi.nlm.nih.gov/pubmed/28809956
http://dx.doi.org/10.1371/journal.pone.0182551
Descripción
Sumario:AIMS: Pulmonary arterial hypertension (PAH) is a lethal disease and improved therapeutic strategies are needed. Increased pulmonary arterial pressure, due to vasoconstriction and vascular remodeling, causes right ventricle (RV) failure and death in patients. The treatment of Sprague-Dawley rats with SU5416 injection and exposure to chronic hypoxia for three weeks followed by maintenance in normoxia promote progressive and severe PAH with pathologic features that resemble human PAH. At 5–17 weeks after the SU5416 injection, PAH is developed with pulmonary vascular remodeling as well as RV hypertrophy and fibrosis. The present study investigated subsequent events that occur in these PAH animals. METHODS & RESULTS: At 35 weeks after the SU5416 injection, rats still maintained high RV pressure, but pulmonary vascular remodeling was significantly reduced. Metabolomics analysis revealed that lungs of normal rats and rats from the 35-week time point had different metabolomics profiles. Despite the maintenance of high RV pressure, fibrosis was resolved at 35-weeks. Masson’s trichrome stain and Western blotting monitoring collagen 1 determined 12% fibrosis in the RV at 17-weeks, and this was decreased to 5% at 35-weeks. The level of myofibroblasts was elevated at 17-weeks and normalized at 35-weeks. CONCLUSIONS: These results suggest that biological systems possess natural ways to resolve pulmonary and RV remodeling. The resolution of RV fibrosis appears to involve the reduction of myofibroblast-dependent collagen synthesis. Understanding these endogenous mechanisms should help improve therapeutic strategies to treat PAH and RV failure.